

State of New Jersey

CHRIS CHRISTIE

Governor

DEPARTMENT OF ENVIRONMENTAL PROTECTION
Mail Code – 401-02B
Water Pollution Management Element
Bureau of Surface Water Permitting
P.O. Box 420

BOB MARTIN Commissioner

KIM GUADAGNO Lt. Governor

Trenton, NJ 08625-0420 Phone: (609) 292-4860 / Fax: (609) 984-7938

> CERTIFIED MAIL 7008 1140 0000 1424 7779 RETURN RECEIPT REQUESTED

> > June 1, 2011

Michael Massaro Site Vice President Oyster Creek Generating Station Exelon Generation Company P.O. Box 388 Forked River, NJ 08731-0388

Re: Draft Surface Water Renewal Permit Action Category: B -Industrial Wastewater NJPDES Permit No. NJ0005550 Oyster Creek Generating Station Lacey Twp, Ocean County

Dear Mr. Massaro:

Enclosed is a **draft** New Jersey Pollutant Discharge Elimination System (NJPDES) permit action identified above which has been issued in accordance with N.J.A.C. 7:14A. This permit serves to incorporate the conditions of the December 9, 2010 Adminstrative Consent Order between the New Jersey Department of Environmental Protection (the Department) and Exelon in which Exelon agreed to permanently cease power generation operations at the facility no later than December 31, 2019.

Notice of this draft permit action will appear in the *Asbury Park Press* and in the June 8, 2011 *DEP Bulletin*. The *DEP Bulletin* is available on the internet at http://www.state.nj.us/dep/bulletin or by contacting the DEP Document Distribution Center at (609) 777-4398.

A non-adversarial public hearing has been scheduled on Thursday, July 7, 2011 at the Lacey Township Municipal Building on Lacey Road from 1 to 4 PM and 7 to 9 PM (or end of testimony). This hearing will provide an opportunity for interested persons to present and submit information on the proposed action.

As detailed in the *DEP Bulletin* and aforementioned newspaper written comments must be submitted in writing to Pilar Patterson, Chief, Bureau of Surface Water Permitting, P.O. Box 029, Trenton, NJ 08625 by the close of the public comment period namely **August 1, 2011**. All persons, including the applicant, who believe that any condition of this draft document is inappropriate or that the Department's tentative decision to issue this draft document is inappropriate, must raise all reasonable arguments and factual grounds supporting their position, including all supporting materials, during the public comment period.

The Department will respond to all significant and timely comments upon issuance of the final document. The permittee and each person who has submitted written comments will receive notice of the Department's final decision to issue, revoke, or redraft the document.

If you have questions or comments regarding the draft action, please contact Susan Rosenwinkel or Heather Genievich of my staff at (609) 292-4860.

Sincerely,

Pilar Patterson, Chief

Bureau of Surface Water Permitting

Enclosures

c: Permit Distribution List

Masterfile #: 15856; PI #: 46400

Program Interest Number: 46400

NJPDES Permit Number: NJ0005550

Table of Contents

This permit package contains the items checked below:

- 1. Cover Letter
- 2. Table of Contents
- 3. Public Notice
- 4. **DEP Bulletin Notice**
- 5. Fact Sheet / Statement of Basis
- 6. NJPDES Permit Authorization Page
- 7. Part I General Requirements: NJPDES
- 8. Part II General Requirements: Discharge Categories
- 9. Part III Limits and Monitoring Requirements
- 10. Part IV Specific Requirements: Narrative

New Jersey Department of Environmental Protection Division of Water Quality Bureau of Surface Water Permitting

PUBLIC NOTICE

Notice is hereby given that the New Jersey Department of Environmental Protection (the Department) proposes to renew the New Jersey Pollutant Discharge Elimination System (NJPDES) Discharge to Surface Water (DSW) Permit NJ0005550 in accordance with N.J.A.C. 7:14A-1 et seq., and by authority of the Water Pollution Control Act at N.J.S.A. 58:10A-1 et seq., for the following discharge:

Applicant or Permittee

Facility

Exelon Generation Company
P.O. Box 388 – Oyster Creek Generating Station
Forked River, NJ 08731-0388

Oyster Creek Generating Station Route 9 South Lacey Township, Ocean County, NJ

The Oyster Creek Generating Station (OCGS or the Station) is an existing nuclear fueled electric generating station. The Station is located between the South Branch of the Forked River and Oyster Creek, two tributaries of Barnegat Bay. This draft permit renewal proposes to continue the previously authorized intake of waters from Forked River as well as the discharge of wastewater through seven outfalls to both Forked River and Oyster Creek. The Station withdraws up to 662.4 million gallons per day (MGD) of water from an intake canal that leads from the Forked River, uses this water as non-contact cooling water, then discharges the water into a discharge canal which leads to Oyster Creek, classified as SE-1 waters. The plant also withdraws approximately 732 MGD of water from the intake canal and discharges it directly into the discharge canal (without added heat) for the purpose of diluting the thermal discharge from the non-contact cooling water. This permit also serves to continue the previously authorized discharge of miscellaneous non-contact cooling water, process wastewater, intake screen washwater and stormwater in minimal amounts through five other outfalls.

The Department previously issued two draft NJPDES permits for this facility. Specifically, the Department issued a draft permit on July 19, 2005 and a redrafted NJPDES permit on January 7, 2010 that superseded the July 19, 2005 draft permit due to the fact that the federal Section 316(b) regulations were suspended. In the January 7, 2010 draft permit the Department determined that closed-cycle cooling (i.e. cooling towers) constitutes best technology available for the Oyster Creek Generating Station in accordance with best professional judgment. The Department's determination was based, among other things, on Exelon's plan to operate the facility until the expiration of its United States Nuclear Regulatory Commission (USNRC) operating license in 2029. The Department solicited comments on the draft permit via the public comment period and public hearings.

On December 9, 2010 Exelon entered into an Administrative Consent Order (ACO) with the Department. As part of this ACO, Exelon agreed that it will permanently cease power generation operations at the facility no later than December 31, 2019 rather than operate the facility until the expiration of its USNRC operating license in 2029. Exelon's commitment to terminate operations on or before December 31, 2019 is a material change to the analysis in the January 7, 2010 determination. In reliance upon Exelon's commitment to terminate operations no later than December 31, 2019, the Department has determined that closed-cycle cooling is not the best technology available given the length of time that would be required to retrofit from the existing once-through cooling system to a closed-cycle cooling system and the limited life span of the facility after implementation of the closed-cycle cooling system. Due to these changed circumstances, the Department has determined that it is appropriate to propose a new draft permit pursuant to N.J.A.C. 7:14A-15.

The draft NJPDES permit is available on the Department's website at www.state.nj.us/dep/dwq. The permit action prepared by the Department is based on the administrative record which is on file at the offices of the Department located at 401 East State Street, Trenton, New Jersey. Appointments for inspection may be requested through the Open Public Records Act. Details are online at www.nj.gov/dep/opra, or call (609) 341-3121.

Written comments on the draft document must be submitted in writing to Pilar Patterson, Chief, or Attention: Comments on Public Notice NJ0005550, Mail Code 401-02B, Bureau of Surface Water Permitting, P.O. Box 420, Trenton, NJ 08625 by **August 1, 2011.** All persons, including the applicant, who believe that any condition of this draft document is inappropriate or that the Department's decision to issue this draft document is inappropriate, must raise all reasonable arguments and factual grounds supporting their position, including all supporting materials, during the public comment period.

Notice is further given that, in accordance with N.J.A.C. 7:14A-15.12, a non-adversarial public hearing has been scheduled to afford the public an opportunity to be heard on this proposed action. This public hearing will be held on Thursday, July 7, 2011 from 1 to 4 PM and again from 7 to 9 PM (or end of testimony) at:

Lacey Township Municipal Building
Lacey Road
Lacey Township, NJ

The hearing shall be held before a Hearing Officer designated by the NJDEP. The applicant and other interested persons will have the opportunity to present and submit information on the proposed action.

The NJDEP will respond to all significant and timely comments upon issuance of the final document. The permittee and each person who has submitted written comments will receive notice of the Department's final permit decision.

	Public Notice of Proposed Permit Actions (Division of Water Quality)							
Permit: Name NJPDES No.	Facility Location: • Address • County	NJDEP: • Case manager • Bureau	Receiving Discharge: • Stream or Formation or POTW	Executive Summary				
• <i>Type</i>		• Phone No.	• Stream Classification					
			Watershed					
Oyster Creek	Route 9 South	Susan Rosenwinkel or	Oyster Creek and Forked River	The Oyster Creek Generating Station is an electric generating station. This draft				
Generating Station	Lacey Township, NJ Ocean County	Heather Genievich	SE1	permit renewal proposes to continue the previously authorized intake of water from Forked River as well as the discharge of wastewater through seven outfalls				
NJ0005550	08731-0388	Bureau of Surface	SLI	to both Forked River and Oyster Creek. This subject permit renewal serves to				
		Water Permitting	Forked River/Oyster Creek	supersede the January 7, 2010 draft NJPDES permit and incorporates the				
DSW Major	Ocean	(609) 292-4860		conditions of the December 9, 2010 Administrative Consent Order. Specifically, this permit includes a determination that cooling towers are not best technology available given the permittee's commitment to terminate operations prior to December 31, 2019.				

Fact Sheet Page 1 of 42 NJPDES #: NJ0005550

New Jersey Department of Environmental Protection Division of Water Quality Bureau of Surface Water Permitting

FACT SHEET

Masterfile #: 15856 PI #: 46400

This fact sheet sets forth the principle facts and the significant factual, legal, and policy considerations examined during preparation of the draft permit. This action has been prepared in accordance with the New Jersey Water Pollution Control Act and its implementing regulations at N.J.A.C. 7:14A-1 et seq. - The New Jersey Pollutant Discharge Elimination System.

PERMIT ACTION: Surface Water Renewal Permit Action – **Draft**

This fact sheet contains information organized into the following sections:

Table of Contents

<u>Section</u>	Section Name	Page Number
1	Name and Address of the Applicant	2
2	Name and Address of the Facility/Site	2
3	Description of Facility	2
4	Overview of Draft Renewal Permit and Permit History	2
5	Discharge Location Information	3
6	Description of Intake	5
	A. General	5
	B. Circulating Water and Service Water System	5
	C. Dilution Water System	6
7	Description of Discharges	6
	A. Discharges to the Intake Canal	6
	B. Discharges to the Discharge Canal	6
	C. Stormwater Discharges	7
8	Determination under Sections 316(a) and (b) of the Clean Water Act	7
	A. Section 316(b) Determination	7
	1. Regulatory Background – Clean Water Action Section 316(b)	7
	2. Historical Section 316(b) Technical Information	8
	3. Section 316(b) Determination in Previous Permits	11
	4. Summary of Impingement and Entrainment Data	12
	5. Available Intake Protection Technologies	19
	6. Section 316(b) Determination in this Renewal Permit	22
	B. Section 316(a) Determination	23
	1. Regulatory Background – Thermal Surface Water Quality Standa	
	and Section 316(a)	23
	2. Section 316(a) Determination in Previous Permits	24
	3. Section 316(a) Determination in this Renewal Permit	26
9	Federal Consistency Determination for Federal Nuclear Regulatory	
	Commission License Renewal	27
10	Type and Quantity of the Wastes or Pollutants	28
11	Summary of Chemical-Specific Permit Conditions	28
	A. Basis for Effluent Limitations and Permit Conditions – General	28
	B. Basis and Derivation for Effluent Limitations and Monitoring Require	
12	Description of Procedures for Reaching a Final Decision on the Draft Act	
13	Contact Information	35
14	Permit Summary Tables	36
15	Contents of the Administrative Record	40

Fact Sheet Page 2 of 42 NJPDES #: NJ0005550

1 Name and Address of the Applicant:

Exelon Generation Company Oyster Creek Generating Station Route 9 South, P.O. Box 388

Forked River, NJ 08731

2 Name and Address of the Facility/Site:

Exelon Generation Company Oyster Creek Generating Station Route 9 South Lacey Township, Ocean County, NJ

3 Description of Facility:

The Oyster Creek Generating Station (hereafter "Station", "facility", or "OCGS") is a nuclear fueled electric generating station (SIC code 4911). The Station is located between the South Branch of the Forked River and Oyster Creek, two tributaries of Barnegat Bay. The Station consists of a single boiling water reactor rated to produce 670 Megawatts electric (MWe). The unit was constructed between December 1964 and September 1969 where operation commenced in December 1969. The Station operates under a license issued by the United States Nuclear Regulatory Commission (US NRC) which was renewed on April 8, 2009.

The facility is classified as a major discharger by the Department in accordance with the EPA rating criteria.

4 Overview of Draft Renewal Permit and Permit History:

The permittee has applied for a New Jersey Pollutant Discharge Elimination System (NJPDES) Surface Water Renewal Permit Action through an application dated May 28, 1999. Until such time as this renewal permit is finalized, the existing permit remains in full force and effect pursuant to N.J.A.C. 7:14A-2.8.

On July 19, 2005 the New Jersey Department of Environmental Protection (the Department) Department issued a draft renewal permit. This 2005 draft permit incorporated conditions consistent with the then effective final regulations issued by the United States Environmental Protection Agency (EPA) for Phase II facilities for which this facility met the eligibility criteria. These federal regulations served to guide implementation of the 316(b) statute and became effective on September 7, 2004. The public comment period began on July 19, 2005 and continued through November 7, 2005. The Department also solicited public comments during public hearings which took place in August 2005 and October 2005.

On July 9, 2007 EPA "suspended" the Phase II regulations through the July 9, 2007 Federal Register notice. This suspension was a result of the fact that the Second U.S. Circuit Court of Appeals issued its decision in the litigation over the Phase II regulation. See <u>Riverkeeper, Inc., v. EPA</u>, No. 04-6692, (2d Cir. January 25, 2007). The court's decision remanded several provisions of the Rule on various grounds. Once the Phase II Rule was suspended, EPA directed States and permitting authorities to issue permits in accordance with Best Professional Judgment (BPJ) pursuant to 40 CFR 401.14. Given the reliance of the July 19, 2005 draft permit on those suspended regulations, the Department was required to redraft the NJPDES permit for those conditions consistent with N.J.A.C. 7:14A-15.14.

On January 7, 2010 the Department issued a redrafted NJPDES permit that superseded the July 19, 2005 draft permit. In the January 7, 2010 permit renewal the Department determined that closed-cycle cooling (i.e. cooling towers) constitutes best technology available (BTA) for the Oyster Creek Generating Station in accordance with best professional judgment (BPJ). The Department's determination was based, among other things, on Exelon's plan to operate the facility until the expiration of its United States Nuclear Regulatory Commission (USNRC) operating license in 2029. Again the Department solicited comments via the public comment period and public hearings. The public comment period began on January 7, 2010 and continued until March 15, 2010; public hearings took place in February and March 2010.

On December 9, 2010 Exelon entered into an Administrative Consent Order (ACO) with the Department. As part of this ACO, Exelon agreed that it will permanently cease power generation operations at the facility no later than December 31, 2019 rather than operate the facility until the expiration of its USNRC operating license in 2029. Exelon's commitment to terminate operations on or before December 31, 2019 is a material change to the analysis in the proposed January 7, 2010 determination. In reliance upon Exelon's commitment to terminate operations no later than December 31, 2019, the Department has determined that closed-cycle cooling is not the best technology available given the length of time that would be required to retrofit from the existing once-through cooling system to a closed-cycle cooling system and the limited life span of the facility after implementation of the closed-cycle cooling system. The facility has physical limitations which constrain the location and types of closed-cycle systems that could be installed. As stated in the January 7, 2010 draft permit, the length of time required to design, permit and construct closed-cycle cooling technology at the facility would likely be at least seven years and would involve significant costs Due to these changed circumstances, the Department has determined that it is appropriate to propose a new draft permit pursuant to N.J.A.C. 7:14A-15.

This subject NJPDES permit renewal proposes to continue the previously authorized intake of water from Forked River and Barnegat Bay as well as the discharge of wastewater to both Forked River and Oyster Creek. This draft permit renewal serves to provide the Department's determination pursuant to Section 316(a) of the Clean Water Act. In addition, due to the changed circumstances described above, this permit proposes the Department's best technology available determination in accordance with Section 316(b) of the Clean Water Act.

5 Discharge Location Information:

Description of Outfalls of Most Significant Flow (DSN 001A and 005A)							
Outfall 001A: Non-Contact Cooling Water (up to 662.4 million gallons per day or MGD) Outfall 005A: Dilution Water (up to 748.8 MGD*)							
Receiving Water:	Oyster Creek	Receiving Water:	Oyster Creek				
Via:	Discharge Canal	Via:	Discharge Canal				
Outfall Configuration:	Partially submerged tunnel	Outfall Configuration:	Submerged pipe				
Classification:	SE1	Classification:	SE1				
Latitude:	39° 48' 40"	Latitude:	39° 48' 48.9"				
Longitude:	74° 12' 00"	Longitude:	74° 12' 28.2"				
County:	Ocean	County:	Ocean				
Municipality:	Forked River	Municipality:	Forked River				
Downstream Confluences:	Barnegat Bay	Downstream Confluences:	Barnegat Bay				
Receiving River Basin:	Barnegat Bay	Receiving River Basin:	Barnegat Bay				
WMA (a):	13	WMA (a):	13				
Watershed:	Forked River/Oyster Creek	Watershed:	Forked River/Oyster Creek				
Subwatershed:	Oyster Creek (below Rt 532)	Subwatershed:	Oyster Creek (below Rt 532)				
HUC 14 (b):	02040301110050	HUC 14 (b):	02040301110050				

There are three dilution pumps available where two are typically used and the third is held in reserve. The dilution water system design basis includes a total of three dilution pumps with a total combined discharge flow of up to 1123.2 MGD.

Description of Other Outfalls (DSN 002Å, 004A, 007A, 008A, 009A)

(DSI\ 002/1, 004/1, 00/11, 000/1)						
Outfall 002A: Non-	Contact Cooling Water		Outfall 004A: Non-Contact Cooling Water,			
(3.5 MGD)			Stormwater, Flooi	Drains (0.06 I	MGD)	
Receiving Water:	Forked River		Receiving Water:	Oyster Creek		
Via:	Intake Canal		Via:	Discharge Cana	.1	
Outfall Configuration:	Submerged pipe		Outfall Configuration:	Submerged pipe	e	
Classification:	SE1		Classification:	SE1		
Latitude:	39° 48' 52.9"		Latitude:	39° 48' 47.6"		
Longitude:	74° 12' 28.2"		Longitude:	74° 12' 24.9"		
County:	Ocean		County:	Ocean		
Municipality:	Forked River		Municipality:	Forked River		
Downstream Confluences:	Barnegat Bay		Downstream Confluences:	Barnegat Bay		
Receiving River Basin:	Barnegat Bay		Receiving River Basin:	Barnegat Bay		
WMA (a):	13		WMA (a):	13		
Watershed:	Forked River/Oyster Creek		Watershed:	Forked River/Oyster Creek		
Subwatershed:	Forked River (below NB including Mid/South Branch)		Subwatershed:	Oyster Creek (b	pelow Rt 532)	
HUC 14 (b):	02040301110030		HUC 14 (b):	0204030111005	50	
Outfall 007A: Process W	astewater (30 GPD)		Outfall 008A: Intake Screen Washwater (2.4 MGD)			
Receiving Water:	Forked River		Receiving Water	Oyster Creek		
Via:	Intake Canal		Via	Discharge Ca	nal	
Outfall Configuration:	Submerged pipe		Outfall Configuration	Submerged p	ipe	
Classification:	SE1		Classification	SE1		
Latitude:	39° 48' 50.9"		Latitude	39° 48' 48.8"	•	
Longitude:	74° 12' 55.1"		Longitude	74° 12' 27.5"	,	
County:	Ocean		County	Ocean		
Municipality:	Forked River		Municipality	Forked River		
Downstream Confluences:	Barnegat Bay		Downstream Confluences	Barnegat Bay	7	
Receiving River Basin:	Barnegat Bay		Receiving River Basin	Barnegat Bay	7	
WMA (a):	13		WMA (a)	13		
Watershed:	Forked River/Oyster Creek		Watershed		Oyster Creek	
Subwatershed:	Forked River (below NB		Subwatershed		(below Rt	
	including Mid/South Branch)			532)		
HUC 14 (b):	02040301110030		HUC 14 (b)	02040301110	0050	
Outfall 009A: Fish Samp						
D '' W	E 1 1D'					

Outfall 009A: Fish Samp	oling Pool Wastewater
Receiving Water:	Forked River
Via:	Intake Canal
Outfall Configuration:	Submerged pipe
Classification:	SE1
Latitude:	39° 48' 48.6"
Longitude:	74° 12' 27.9"
County:	Ocean
Municipality:	Forked River
Downstream Confluences:	Barnegat Bay
Receiving River Basin:	Barnegat Bay
WMA (a):	13
Watershed:	Forked River/Oyster Creek
Subwatershed:	Forked River (below NB
	including Mid/South Branch)
HUC 14 (b):	02040301110030

Footnotes:

- (a)
- WMA = Watershed Management Area HUC 14 = 14 digit Hydrologic Unit Code (b)

6 Description of Intake:

A. General

Construction of the Oyster Creek Generating Station resulted in the dredging and widening of the Forked River and Oyster Creek and the construction of man-made canals leading from Forked River to the Station (intake canal) and from the Station to Oyster Creek (discharge canal). While the intake and discharge canal could potentially connect; there is a dike that separates the upstream ends of both canals. A map showing the location of both canals is included at the end of this Fact Sheet.

The Station utilizes intake water for two primary purposes. The circulating water and service water systems utilize up to 662.4 million gallons per day (MGD) for the purposes of cooling the main condenser. The dilution water system utilizes up to 748.8 MGD for the purposes of mitigating the thermal effects in the discharge canal. These two systems are described in detail below. While Forked River and Barnegat Bay are the primary sources of intake water, an additional source of water used for operations is fresh water from an on-site well.

Sanitary wastewater that is generated on site is conveyed to the Lacey Township Municipal Utilities Authority and subsequently to the Ocean County Utilities Authority regional collection system.

B. <u>Circulating Water and Service Water System</u>

Water is withdrawn from Forked River and Barnegat Bay via the Station's Intake Canal. There are four intake pumps each with a capacity of 115,000 gallons per minute (gpm) (which is equivalent to 165.6 MGD). During normal operations, all four pumps operate continuously at an average flow rate of 662.4 MGD. This intake water is used to cool the main condenser and the turbine building heat exchangers. This cooling water is then discharged through **DSN 001A** into the discharge canal, which joins Oyster Creek and ultimately Barnegat Bay.

The Station's Intake Canal includes two surface water intake structures, namely the Circulating Water Intake, which also services flow for the service water system, and the Dilution Water Intake. The Circulating Water Intake is divided into two sections or bays. Each bay contains three cells. Water enters the cells through trash racks where there is one trash rack per cell. The trash racks are constructed of steel, semi-vertical positioned bars on 3 inch centers; so that the trash rack slot opening is approximately 2 ½ inches. After passing through the trash rack, water is drawn through conventional vertical traveling screens (3/8 inch mesh) modified with "Ristroph" type fish buckets fitted to the base of each screen panel. These fish buckets are intended to prevent aquatic organisms that become trapped on the screens from falling back into the screen well and being repeatedly trapped. They also allow organisms to remain in a water filled bucket when the screen panel is rotated above the water surface. The screen-wash system includes an external low pressure spray (10 to 15 pounds per square inch or psi) and an internal low pressure spray (20 to 30 psi) designed to wash marine life off the screens and into the fish return system. After the marine organisms have been removed, a high pressure spray (70 to 90 psi) is used to remove debris from the screens. Screens normally rotate continuously at 1.3 cm/sec (2.5 feet per minute) but speeds can increase via manual control. Water passing through the trash racks and traveling screens is withdrawn by circulating or service water system pumps for use as cooling water. The fish return system is routed to the discharge canal which thereby eliminates the possibility that fish can be immediately reimpinged.

Intake screen washwater is discharged via **DSN 008A** where this flow averages approximately 2.4 MGD. The intake screen washwater removes debris and other organic matter from the Station's traveling intake screens, including the screen washwater system strainers, and discharges to the discharge canal without any additives or treatment. The facility has the option of diverting fish and other organisms removed from the traveling screens to a fish sampling pool where the water from such is drained to the Forked River. The discharge from the fish sampling pool is authorized as **DSN 009A** and is utilized during impingement sampling events.

C. Dilution Water System

The permittee also pumps water from the Forked River via the intake canal and discharges it directly to the discharge canal via **DSN 005A** without any addition of heat or other pollutants and without treatment. Dilution pump water is withdrawn via one or two of the Station's three dilution pumps and discharged for the purposes of moderating the temperature of the Station's discharge to Oyster Creek and Barnegat Bay. The dilution water system intake structure is divided into three sections or bays where each section contains two cells. Although the design of these pumps allows for some entrainment survivability, these pumps are not currently equipped with any entrainment controls. Flow varies according to the number of dilution pumps in operation but averages approximately 708 MGD.

The dilution water system intake is located on the west bank of the Intake Canal, across from the cooling water intake. Three low speed (180 revolutions per minute) axial flow pumps with 7 foot impellers with a design capacity of 260,000 gpm each provide water for the dilution water system. Normally two dilution pumps are used during "winter" and "summer" water conditions (as defined in a 1978 stipulation). The dilution water system intake has two trash racks for each of these three pumps.

Fresh water is drawn from the Station fire protection water system and is used for dilution pump lube oil cooling and pump seal water. This water is discharged through DSN 005A at a rate up to 100 gpm, depending upon the number of dilution pumps in operation. A small, intermittent component of the fire protection water system flow is the discharge from the emergency diesel fire pump heat exchangers. The two emergency diesel fire pumps are required for emergency purposes, such as fire protection and emergency core cooling. Their operation is limited to 163 hours per year. When the pumps are operated, cooling water from the heat exchangers is discharged through 1.5 inch pipes at a rate of approximately 35 gpm. The increase in temperature is about 11 degrees Fahrenheit and no chemicals are added to the discharge. Most of the cooling water flow is drawn into the flow for the fire protection water system and does not flow back to Oyster Creek. Additionally, on an infrequent basis, small quantities of stormwater that may accumulate in a cable vault in the Dilution Pump intake structure are introduced into the dilution water flow.

7 Description of Discharges:

A. <u>Discharges to the Intake Canal</u>

Approximately 3.53 MGD of wastewater and other washwater is discharged by the Station to the intake canal via outfalls DSN 002A, DSN 007A and DSN 009A. **DSN 002A** consists of approximately 3.5 MGD of chlorinated noncontact cooling water from the Station's radioactive waste treatment system's heat exchanger and augmented off-gas heat exchanger. **DSN 007A** consists of approximately 30 GPD of dilution pump seal wastewater, which is treated by an oil/water separator prior to discharge. As described previously, **DSN 009A** is the discharge from the fish sampling pool and is operated on an as needed basis.

B. Discharges to the Discharge Canal

Approximately 1326 MGD of non-contact cooling water and other wastewater is discharged to the discharge canal. **DSN 001A** typically consists of 592 MGD of once through non-contact cooling water from the previously described circulating water and service water system. This water is used to cool the main condenser prior to discharge through the discharge canal. This non-contact cooling water is chlorinated to protect the heat exchanger tubes from marine and organic fouling. The main condenser consists of six sections among which the flow is equally divided. The chlorination injection system (sodium hypochlorite) is designed so that each condenser section is separately chlorinated. Only one section is chlorinated at a time so that the sections are consecutively chlorinated for 20 minutes each during the daily cycle for a maximum of two hours per day of chlorination. The water then passes through the steam condensers and is discharged through DSN 001A.

The Station discharges other wastewater via outfalls DSN 004A, DSN 005A, and DSN 008A to the discharge canal. **DSN 004A** consists of approximately 60,000 GPD of low volume wastewater that includes stormwater, non-contact cooling water from the reactor building and emergency service water heat exchangers, laboratory and sampling streams, and various floor drains which emanate from sumps. As described previously, **DSN 005A** is the discharge of

approximately 708 MGD (on average) of dilution pump water and **DSN 008A** is the discharge of approximately 2.4 MGD of intake screen washwater.

C. Stormwater Discharges

The existing permit contains requirements for outfalls DSN 012A, DSN 013A, and DSN 014A which discharge stormwater from sedimentation basins to the South Branch of the Forked River. These discharges are located on a portion of the site that was retained by First Energy when the Station was sold to AmerGen Energy Company, LLC (the permittee at that time) after the existing permit became effective. These outfalls are currently regulated under a general stormwater permit issued to First Energy and therefore are being removed from this permit action.

Determinations under Sections 316(a) and (b) of the Clean Water Act:

A. Section 316(b) Determination

1. Regulatory Background - Clean Water Act Section 316(b)

Section 316(b) "require[s] that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact." The majority of environmental impacts associated with intake structures are caused by water withdrawals that ultimately result in aquatic organism losses. In that regard, cooling water intakes can have two types of effects. The first effect, referred to as *impingement*, occurs when organisms are caught on the intake screens or associated trash racks. The second effect, referred to as *entrainment*, occurs when organisms pass through the facility's intake screens and the cooling system itself.

Impingement takes place when organisms are trapped against intake screens by the force of the water passing through the cooling water intake structure. Impingement can result in starvation and exhaustion (organisms are trapped against an intake screen or other barrier at the entrance to the cooling water intake structure), asphyxiation (organisms are pressed against an intake screen or other barrier at the entrance to the cooling water intake structure by velocity forces that prevent proper gill movement, or organisms are removed from the water for prolonged periods of time), and descaling (fish lose scales when removed from an intake screen by a wash system) as well as other physical harm.

Entrainment occurs when organisms are drawn through the cooling water intake structure into the cooling system. Organisms that become entrained are normally relatively small benthic, planktonic, and nektonic organisms, including early life stages of fish and shellfish. Many of these small organisms serve as prey for larger organisms that are found higher on the food chain. As entrained organisms pass through a plant's cooling system they are subject to mechanical, thermal, and/or toxic stress. Sources of such stress include physical impacts in the pumps and condenser tubing, pressure changes caused by diversion of the cooling water into the plant or by the hydraulic effects of the condensers, shear stress, and chemical toxemia induced by antifouling agents such as chlorine.

As noted previously, EPA issued final regulations effective September 7, 2004 which served to guide implementation of the 316(b) statute. Phase II existing facilities, as defined by EPA in their Phase II regulations, are facilities that commenced construction before January 17, 2002 that have design flows over 50 MGD. This facility met the definition of a Phase II facility under the Phase II regulations. The term "cooling water intake structure" is defined as the total physical structure and any associated constructed waterways used to withdraw cooling water from waters of the U.S. The cooling water intake structure extends from the point at which water is withdrawn from the surface water source up to, and including, the intake pumps. The Phase II Regulations were appealed by multiple parties.

In <u>Riverkeeper, Inc., v. EPA</u>, No. 04-6692, (2d Cir. January 25, 2007) the Second U.S. Circuit Court of Appeals issued its decision in the litigation over the Phase II regulation. The court's decision remanded several provisions of the Rule on various grounds including, but not limited to the following:

- EPA's determination of the Best Technology Available under section 316(b);
- The Rule's performance standard ranges;

Fact Sheet Page 8 of 42 NJPDES # : NJ0005550

- The Cost-cost and cost-benefit compliance alternatives;
- The Technology Installation and Operation Plan provision and;
- The restoration provisions.

EPA then suspended the Phase II Section 316(b) regulations as articulated in the July 9, 2007 Federal Register. EPA directed States and permitting authorities to issue permits in accordance with Best Professional Judgment (BPJ) pursuant to 40 CFR 401.14.

Cost-benefit analysis was one element of the Second Circuit Court decision. The issue of cost-benefit analysis was brought before the Supreme Court. Specifically, the question presented was "Whether 316(b) of the Clean Water Act, 33 U.S.C. 1326(b), authorizes the EPA to compare costs with benefits when determining the "best technology available for minimizing adverse environmental impacts" at cooling water intake structures?"

On April 1, 2009, the Supreme Court issued a decision regarding the validity of cost/benefit determinations for Phase II facilities. The Supreme Court determined that the EPA permissibly relied on cost-benefit analysis in providing for cost-benefit variances from those standards as part of the Phase II regulations.

EPA agreed to a consent decree with the Riverkeeper which establishes a deadline to propose new federal Section 316(b) rules by March 14, 2011 where finalization is expected on July 27, 2012 (http://water.epa.gov/lawsregs/lawsguidance/cwa/316b/). In the meantime, states are required to issue Section 316(b) determinations in accordance with best professional judgment until such time as the new Section 316(b) regulations are finalized.

2. <u>Historical Section 316(b) Technical Information</u>

Contractor Review

In 1987, the Department engaged Versar, Inc. as an independent contractor to assist in reviewing the permittee's Section 316(a) and (b) Demonstration. The Section 316 Demonstration was originally submitted in 1974 with supplements in 1978 and July 1986. The 1986 supplement included an analysis of entrainment and impingement studies conducted from November 1984 through December 1985.

Versar was tasked to review and evaluate the Section 316 documents, to evaluate the impact of the facility on the aquatic environment, and to recommend the limitations which should be placed on the intakes and discharges so as to meet the intent of Section 316 and other applicable State and Federal requirements. The Department released Versar's 1988 Advanced Final Report for comment in 1988. In reviewing the permittee's 1988 comments, the Department learned that Versar had not been aware of critical data collected by the permittee at that time, namely GPU Nuclear. Upon review of this additional information, Versar submitted a report entitled "Technical Review and Evaluation of Thermal Effects Studies and Cooling Water Intake Structure Demonstration of Impact for the Oyster Creek Nuclear Generating Station, Revised Final Report", dated May 1989 (hereafter "1989 Versar Report"). A summary of this data and Versar's findings are noted below.

b. Summary of Historic Impingement/Entrainment Losses in a Population Context

While dated, historical impingement and entrainment data as contained in the above referenced documents is still appropriate for consideration as it gives a measure of the impingement and entrainment impacts as well as the Representative Important Species (RIS) used to evaluate the effects. The historical data should also be considered because there have been no substantial changes to the operation of the plant. The Section 316 demonstration relied on the following Representative Important Species (RIS) to assess intake impacts at the Station:

Winter Flounder Bay Anchovy
Sand Shrimp Hard Clam
Blue Crab Eelgrass

Opossum Shrimp Atlantic Ridley turtle

Teredo spp. Bankia gouldi

The RIS impact assessment approach is based on the concept that it is not feasible or cost effective to measure power plant effects on all species inhabiting aquatic environments. In most aquatic ecosystems it is, however, generally possible to identify biota which because of their abundance, distribution, ecological, or economic importance are essential to and/or representative of the maintenance of balanced, indigenous populations of shellfish, fish, and wildlife. These RIS are used to focus impact assessment efforts, making the assumption that if populations of these surrogate species are protected, then other populations, and the ecosystem as a whole, will also be protected. Because many RIS are near the top of the estuarine food webs or are key links in food webs, changes in the abundance or distribution are indicators of system wide alterations. In order for RIS to be reliable indicators of impact, they should include biota that are sensitive to power plant impacts as well as biota that are representative of all major trophic levels.

As noted in the 1989 Versar Report, the following three models were used to evaluate impingement and entrainment losses in the context of population size or biological productivity to understand the potential consequences of losses to Barnegat Bay RIS populations. The models used were:

- 1. Equivalent Adult Model (EAM) which examines changes in survivorship to sexual maturity or recruitment into a fishery.
- 2. Production Foregone Model (PFM) which examines fractional reductions in annual net population (weight) production.
- 3. Spawning/Nursery Area of Consequence Model (SNAC) which estimates fractional (or percent) reduction in RIS populations which are directly attributable to the Oyster Creek facility.

The EAM evaluated the number of RIS which would have survived to adulthood if impingement and entrainment losses had not occurred. The EAM was used since many of the aquatic organisms lost are at early life stages or are juveniles. Results of the EAM in the 1989 Versar Report are presented below:

<u>Species</u>	Estimated Adult Loss	(Thousands per year)
Bay Anchovy	137,000	
Hard Clam	59	
Blue Crab	10.4	
Winter Flounder	56.4	
Opossum Shrimp	1,720,000	
Sand Shrimp	164,000	

Versar noted that the projected equivalent adult losses for bay anchovy, opossum shrimp, and sand shrimp are high but the production foregone model provided a better means to evaluate the significance of these losses to ecological functions in the Barnegat Bay. Versar also noted that these calculated equivalent adult losses are highly variable due to large uncertainties associated with entrainment losses.

The PFM estimated percentage declines in annual net production due to entrainment and impingement for those RIS which serve a forage function. Results of Versar's PFM are presented below:

RIS species	Percent loss	Forage Production Lost
Bay Anchovy	12.4%	354,000 pounds
Opossum Shrimp	8.7 %	67,000 pounds
Sand Shrimp	16.5%	1,650,000 pounds

The SNAC model estimated percentage declines in populations due to entrainment and impingement at the Oyster Creek Generating Station. Results of Versar's SNAC model in the 1989 Versar Report are presented below:

RIS species	Percent of Population Decline
Winter Flounder	2.1%
Bay Anchovy	3.2%
Hard Clam	1.5%
Blue Crab	0.4%
Sand Shrimp	16.6%
Opossum Shrimp	2.0%

As summarized above, the 1989 Versar Report provided information regarding losses to RIS and also provided loss information in the context of populations. Loss data is helpful in assessing what technologies may be available to reduce losses. However, the Department maintains that it is unnecessary to have to prove that an impact to a population must be demonstrated in order to trigger Section 316(b). While the Section 316(b) regulations are now suspended, this rationale is consistent with the Phase II regulations where adverse environmental impact was not defined. Available data shows that impingement and entrainment losses are documented and must be minimized consistent with the goal of the Section 316(b) statute.

c. Alternative Intake Protection Technologies from Historical Studies

As described in the 1994 NJPDES permit and summarized in the July 19, 2005 and January 7, 2010 draft NJPDES permits, the Department evaluated available information on various technologies, including their technical feasibility, biological effectiveness, and associated costs in reviewing Versar's 1989 findings. The alternative technologies identified by the Department's contractor, Versar, to have the greatest potential for application to reduce impingement and entrainment at the Station were:

- 1. Replacing the existing 3/8" mesh traveling screens with fine mesh screen panels.
- 2. Traveling screens with conventional 3/8" mesh or fine mesh retrofitted in front of the dilution pumps and/or fine-mesh centerflow screens retrofitted in front of the dilution pump.
- 3. Replacement of intakes with fine-mesh wedgewire screens.
- 4. Closed cycle cooling (cooling towers).
- 5. Optimization of dilution pump operations.

As discussed in the 1989 Versar Report, the first two alternatives would increase impingement losses while reducing entrainment. The net ecological benefit of these retrofits would depend on the degree to which the reduction in entrainment losses exceeds the gain in impingement losses. Versar looked primarily at the first three physical barrier alternatives as they could be applied without complete replacement of the intake structure so as to avoid the high cost of an entirely new intake structure. Versar was concerned with limited data on the engineering feasibility of some of these alternatives and was not able to recommend that the cost of these technologies could be appropriate in view of the limited benefits of these technologies. In sum, Versar found that none of the screening options would reduce losses at the facility by even 50%.

Versar dismissed the wedgewire screen alternative because its costs far exceeded its benefits. Biofouling and detrital clogging would also be an operational concern in the application of wedgewire screens at the Station.

Versar also considered the alternative of recirculating cooling towers which are a demonstrated, effective technology for reducing entrainment and impingement, as well as reducing thermal discharge impacts. Cooling towers are the most expensive alternative but would provide the highest degree of protection of any single currently available technology as a proportionate reduction in impact would result from the withdrawal (flow) reduction. Cooling towers were expected to be more costly then the physical barrier alternatives and Versar did not recommend cooling towers to be designated the best technology available due to concerns about economic cost. Additionally, Versar concluded that there are ecological costs associated with cooling towers. Natural draft cooling towers are typically several hundred feet high and add considerable visual impact. Mechanical draft towers may be lesser in size thereby imposing less visual impact but would impose noise from tower fans as well as the potential for local salt drift, fogging and icing.

Versar also looked into optimization of dilution pump operations as an alternative for reducing total plant impingement-entrainment losses. Optimization studies would compare the benefits of an altered thermal mortality rate

Fact Sheet Page 11 of 42 NJPDES # : NJ0005550

(from the cooling provided by dilution pump flows) with the environmental cost of exposure by entrainment of a greater number of organisms due to dilution pump flows. Versar found that the Section 316 Demonstration did not contain sufficient information to optimize dilution pump operations. Versar also found that November through February (potential cold shock) and July and August (potential heat shock) are periods of high risk of increasing total mortality associated with the facility.

3. Section 316(b) Determination in Previous Permits

a. 1994 NJPDES Permit

Based on the above noted review of available intake protection technologies and available Section 316(b) guidance at that time, the Department determined in its 1994 NJPDES permit that the existing cooling water intake structure, in conjunction with the pursuit of Dilution Pump Optimization Studies, was designated Best Technology Available under Section 316(b).

b. 2005 NJPDES Draft Permit (never finalized)

The July 19, 2005 draft NJPDES permit was issued based upon the Section 316(b) regulations for Phase II facilities which were in effect at that time. These regulations have since been repealed. In the 2005 draft NJPDES permit, the Department expressed concern about both impingement and entrainment losses, but particular concern about entrainment losses. Species of particular concern include hard clam, blue crab, bay anchovy and sand shrimp. Nonetheless, the Department stated that it understood that there are limited design and construction technologies available to reduce entrainment. Specifically, the Department recognized that closed cycle cooling is the only cooling water intake structure technology available to the facility to reduce entrainment. Closed cycle cooling serves to significantly limit the amount of intake flow and thereby reduces both impingement and entrainment. Restoration could be used as a means to offset entrainment where there would also be benefits to larger life stages that are typically susceptible to impingement.

Based upon a review of site-specific factors at the facility, past Department policies and practices in implementing Section 316(b), and given the fact that the facility withdraws water from a tidal river or estuary, the Department determined that two compliance alternatives were available as specified in the then effective Section 316(b) regulations. As specified in the July 19, 2005 draft NJPDES permit, these alternatives are as follows:

- 1) <u>Alternative 1</u>: Reduce intake capacity to a level commensurate with the use of a closed-cycle, recirculating cooling system. This is the Department's preferred alternative. If Alternative 1 is chosen, the permittee would not be required to submit the Comprehensive Demonstration Study (CDS) as referenced in the Phase II Section 316(b) regulations.
- 2) <u>Alternative 2</u>: If the permittee demonstrates that Alternative 1 is unavailable to this facility, the Department would allow the permittee to select, install, properly operate and maintain a combination of design and construction technologies, operational measures, and/or restoration measures that will, in combination with any existing design and construction technologies, operational measures, and/or restoration measures, meet the following national performance standards:

<u>Impingement Mortality Performance Standard</u> – Reduce impingement mortality for all life stages of fish and shellfish by 80 to 95 percent from the calculation baseline¹.

<u>Entrainment Performance Standard</u> – Reduce entrainment for all life stages of fish and shellfish by 60 to 90 percent from the calculation baseline¹.

¹ The calculation baseline means an estimate of impingement mortality and entrainment that would occur on-site assuming a shoreline cooling water intake structure with an intake capacity commensurate with a once-through cooling water system and no impingement and/or entrainment controls.

Fact Sheet Page 12 of 42 NJPDES # : NJ0005550

In addition to compliance with the national performance standards, the permittee shall initiate a wetlands restoration and enhancement program of a minimum of 350 acres within the Barnegat Bay estuary to offset any residual impingement and entrainment losses at the facility to realize benefits as soon as possible.

It is the Department's practice and policy to set forth a Best Technology Available (BTA) determination in its NJPDES permits with respect to Section 316(b). Consistent with past practice, the Department set forth a BTA determination in the July 19, 2005 draft NJPDES permit based on the site-specific factors at Oyster Creek and available information. Therefore, based on the above findings, the Department determined that BTA for this facility is as follows:

- Option 1 the implementation of closed-cycle cooling is best technology available.
- Option 2 BTA consists of the permittee's existing once-through cooling system coupled with a limit on the intake velocity, pursuit of the studies required under the Section 316(b) Phase II Regulations, and the initial restoration requirement.

In addition to the above, the Department reiterated the specific requirements of the CDS within the permit, as specified in the then effective Section 316(b) Phase II regulations, along with set deadlines.

c. 2010 NJPDES Draft Permit (never finalized)

The January 7, 2010 draft NJPDES permit was issued to supersede the July 19, 2005 draft permit. In the absence of federal Section 316(b) regulations, the Department relied upon best professional judgment to determine that closed-cycle cooling (i.e. cooling towers) constituted best technology available. This determination was based upon the following factors:

- Significant impingement and entrainment losses are documented in both historic and current data. The magnitude of these losses is due primarily to the location of OCGS in a marine environment. Closed-cycle cooling would reduce water intake usage significantly thereby decreasing impingement and entrainment effects. It is particularly noteworthy that closed-cycle cooling is one of the few technologies available to target entrainment effects.
- Based on its review of the permittee's Cooling Tower Availability study, the Department remains unconvinced that closed-cycle cooling is unavailable for this site.
- The permittee received a 20 year renewal of its operating license for OCGS from the United States Nuclear Regulatory Commission.

In the January 7, 2010 draft permit the Department required operation of a closed-cycle cooling system within three years of finalizing design and awarding construction contracts.

- 4. Summary of Impingement and Entrainment Data
- a. Proposal for Information Collection (PIC)

In direct response to the now suspended Section 316(b) Phase II regulations, OCGS submitted a PIC which is a component of the CDS as outlined in the regulations. The PIC is dated June 29, 2005 and includes the information contained in the Rule at 40 CFR 125.95(b)(1). Specifically, the PIC is the proposed work plan for collecting information to be used to support the CDS and specifically outlined additional analyses, including new field studies, to be performed.

The PIC describes the sampling programs for the new field studies as follows:

The sampling programs at the circulating water intake structure address impingement, impingement mortality, entrainment and entrainment survival. At the dilution/bypass water intake structure, studies will examine the magnitude of entrainment of impingeable-size organisms and their ability to survive passage through the dilution/bypass pumps and entrainment survival.

Collection efficiency tests and delayed mortality studies were also proposed for the traveling screens at the circulating water intake structure.

With respect to dilution pump survivability, the objective of this program was to (1) produce accurate density estimates of impingeable-size fish and shellfish passed through the dilution/bypass pumps, and (2) to produce accurate estimates of initial survival. The seven target species for this program are: Atlantic silverside, bay anchovy, northern pipefish, winter flounder, sand shrimp, grass shrimp, and blue crab. Weekly sample collection was proposed including nighttime sampling which is consistent with sampling in the most recent historical studies.

The Department conducted a comprehensive review of the PIC as detailed in a letter dated September 9, 2005. In this response letter on the PIC, the Department included a comparison of the historical and proposed impingement sampling programs at the circulating water intake as follows:

Species Targeted in PIC – Impingement	Historical Impingement Sampling	>70% of the Finfish Catch through the Circulating Water Intake during the September 1975 through October 1985 period	96% of the Total Number of Organisms Passing through the Dilution/Bypass pumps During the December 1984 to December 1985 Study Period
Sand Shrimp	Sand Shrimp		Sand Shrimp (42%)
Blue Crab	Blue Crab		Blue Crab (4%)
Atlantic Silverside	Atlantic Silverside	Atlantic Silverside	Atlantic Silverside (3%)
Northern Pipefish	Northern Pipefish	Northern Pipefish	
Winter Flounder	Winter Flounder	Winter Flounder	
Bay Anchovy	Bay Anchovy	Bay Anchovy	Bay Anchovy (30%)
	Weakfish	Weakfish	
	Blueback Herring	Blueback Herring	
	Atlantic Menhaden	Atlantic Menhaden	
	Bluefish		
	Summer Flounder		
	Northern Puffer	Northern Puffer	
	Northern Kingfish		
Grass Shrimp			Grass Shrimp (17%)

Based on the above comparison, the Department provided approval of the species selected for impingement sampling provided that weakfish, blueback herring, atlantic menhaden and summer flounder were added making a total of eleven target species. The permittee agreed to the inclusion of these additional target species in a letter dated September 21, 2005. The permittee formally responded to the Department's comments on the PIC in a letter dated November 7, 2005.

Also, in its September 9, 2005 letter, the Department found the entrainment sampling design acceptable as long as the details of such were consistent with the sampling design for the 1975 through 1981 data.

Due in part to fulfill its requirements under the Coastal Zone Management Process, as described below, the permittee decided to extend impingement and entrainment sampling to a second year (i.e. Year 2). In addition to the targeted species mentioned above, the permittee added Atlantic croaker to the list after observing high numbers of this species as discussed in the "Characterization of Aquatic Resources and Impingement and Entrainment at Oyster Creek Nuclear Generating Station" dated September 2008 (hereafter "2008 Characterization Report").

b. Impingement Data

To provide the impingement and entrainment results that were collected as outlined in the PIC and to support the permittee's application under the Coastal Zone Management Act, AmerGen (the permittee at that time) submitted the OCGS Fishery Data Report dated November 20, 2007 (hereafter "2007 Fishery Report"). This report transmits all

Year 1 and Year 2 raw data. The final version of this report is the 2008 Characterization Report referenced above. The 2008 Characterization Report presents impingement and entrainment data that has been annualized and adjusted for gear efficiency. These reports compare Year 1 and Year 2 impingement and entrainment data with the results of historical impingement and entrainment studies conducted at OCGS in the 1970s and 1980s as well as with the conclusions of the 1989 Versar Report. The purpose of these comparisons is to (1) determine if major differences in species composition and abundance that cannot be attributed to normal fluctuations in biological systems are apparent between the historical data and the recent data, and (2) evaluate whether recently observed data are consistent with trends as documented in the 1989 Versar Report.

Recent Impingement Sampling – 2008 Characterization Report

Impingement sampling at the Circulating Water Intake was performed for two twelve hour periods each week, with one of these events encompassing daytime hours and the other event covering nighttime hours to allow for a determination of day/night differences. At least 12 collections were made during the total 24 hours of sampling, with a ratio of approximately twice as many collections made during the night period since historical sampling data suggest that greater numbers of organisms are impinged after sunset.

A summary of impingement data for those species that accounted for more than one percent of the total number in either year is included below. These data were collected between September 2005 through September 2007 with the exception of those weeks in which the plant was not operating or there was construction interference with the sampling pool. Actual cooling water pump operational data served as inputs to this data. The estimated total number is a sum of the individual collections. Data is as follows:

	Impingement	t at the Circu	lating Wate	er Intake Structure		
		Year One		Yea	ar Two	
Taxon	Estimated Total Number	Percent	Rank	Estimated Total Number	Percent	Rank
		Sh	ellfish	•	•	•
Blue Crab	1343629	37.15%	1	1020396	27.79%	2
Grass Shrimp	1245929	34.44%	2	900485	24.53%	3
Sand Shrimp	911709	25.20%	3	1734992	47.26%	1
		F	infish		•	
Atlantic Croaker	1038147	36.25%	1	16125	1.29%	11
Atlantic Silverside	341564	11.93%	2	222705	17.85%	2
Northern pipefish	294831	10%	3	46307	3.71%	6
Bay Anchovy	261841	9.14%	4	64192	5.14%	5
Atlantic Menhaden	129428	4.52%	5	529160	42.41%	1
Silver Perch	88040	3.07%	6	23392	1.87%	7
Tautog	79200	2.77%	7	16827	1.35%	9
Winter Flounder	62141	2.17%	8	11414	.091%	15
Unmeasurable	60267	2.10%	9	18853	1.51%	10
Feather Blenny	53233	1.86%	10	10876	0.87%	16
Weakfish	20381	0.71%	16	74370	5.96%	3
Rough silverside				71794	5.75%	4
Naked goby	11672	0.41%	21	16907	1.35%	8

Collection efficiency tests were performed as part of the Year One and Year Two data. The data in the table above is adjusted for collection efficiency. Gear efficiency from September 2005 to August 2006 was 65.7 percent. In August 2006, new screen flap seals were installed and the collection efficiency improved to 88.6 percent

In Year One and Year Two impingement collections were dominated by three invertebrate species: grass shrimp, sand shrimp and blue crab. Together these three invertebrate species comprise approximately 54 percent of all organisms

impinged in Year One and 74 percent of all organisms impinged in Year Two. The majority of shellfish were impinged at night with 78% for Year One and 84% for Year Two. With regard to finfish, impingement collections in both years were dominated by small, schooling species, most notably Atlantic croaker, Atlantic menhaden, Atherinidae (several species of silverside), weakfish, and bay anchovy.

Comparison of Recent Year One and Year Two Impingement Data with Historic Impingement Data

Historical impingement studies were conducted annually at OCGS from September 1975 through December 1985. Both similarities and differences exist amongst the various years of these historical studies. Similarities include the location of impingement sampling, the sampling gear used, and the techniques used for processing impingement samples. Major differences among years for the historical data include the type of traveling screens, the mode of screen wash operation, the length of impingement sampling time, the frequency for sampling, and the time of day at which samples were collected. Until 1980, OCGS utilized conventional vertical traveling screens then these conventional screens were replaced with Ristroph screens. Both types of screens have a 9.5 mm mesh screen. The screen rotation and wash operation varied from 1975 to 1985 depending upon the magnitude of debris and organisms impinged on the screens. The frequency of sampling and the time of day in which samples were taken changed appreciably over the years. The sampling period encompassed all times of day, and except for the period September 1977 to March 1979, samples were taken both during the day and night. None of the historical sampling data was corrected for collection efficiency as noted in the 1989 Versar Report.

In its 2007 Fishery Report and subsequent 2008 Characterization Report, the permittee compared the Year One and Year Two recent data with the historical data. Gear efficiency was not addressed in historical studies. Other differences between historic and current collection methods include changes in sample location (due to security changes at OCGS) and improvements in sampling gear. Only those historic data with comparable sampling methods and sufficient information on sample volume/ sample time to yield comparable estimates of entrained/impinged organisms were compared for this report. Specifically, impingement data sets from 1976 to 1979 and 1985 were compared to the Year One and Year Two data sets.

To ensure a clear understanding of available data, the Department has included a summary of historical data from these years, as represented in the 1986 EA report, which is as follows:

Annual Impingement of Selected Species by Study Year									
	Adjusted for Differences in Sampling Effort (EA 1986)								
Species	Sep 1975 –	Sep 1976 –	Sep 1977 –	Sep 1978 –	Sep 1979 –	Nov 1984 –			
	Aug 1976	Aug 1977	Aug 1978	Aug 1979	Aug 1980	Oct 1985			
Blueback herring	28,120	27,496	42,279	103,498	35,034	52,190			
Atlantic Menhaden	17,788	94,960	54,460	9,388	3,427	4,654			
Bay Anchovy	1,811,550	147,202	155,858	146,531	85,611	195,867			
Atlantic Silverside	61,272	35,051	86,687	196,164	153,912	276,943			
Northern Pipefish	36,066	11,220	21,881	53,700	29,822	107,875			
Bluefish	14,086	3,935	3,661	9,658	2,392	4,937			
Weakfish	11,790	27,297	20,839	5,272	46,186	11,083			
Northern Kingfish	16	105	23	20	342	0			
Summer Flounder	4,266	2,380	1,881	1,308	6,440	3,437			
Winter Flounder	8,908	18,618	27,600	148,442	16,122	18,205			
Northern Puffer	3,313	1,516	50,414	272	420	981			
Sand Shrimp	3,342,143	600,278	3,793,355	4,818,977	3,365,975	17,090,788			
Blue Crab	5,627,253	230,691	1,167,289	310,873	77,727	1,333,894			

¹ Night samples only were collected from the period of September 1977 through May 1979.

c. Entrainment Data

Recent Entrainment Sampling – 2008 Characterization Report

Entrainment sampling was performed at the Circulating Water Intake once per week. Samples were obtained every six hours during each weekly 24-hour sampling event during two separate 12-hour periods which approximated day and night. Entrainment sampling coincided with weekly impingement sampling. The samples were collected immediately in front of the intake screens. Note that sampling was not conducted at the dilution/bypass water intake to quantify entrainment at this location.

A summary of entrainment data for those species that accounted for more than one percent of the total number in either year is included below. These data were collected from September 2005 to September 2006 for Year 1 and from September 2006 to September 2007 for Year 2 and are as follows:

	Entrainr	nent at the	Circulatir	ng Water Intake		
	Year One			Y	ear Two	
	Shellfis	h Represen	tative Imp	ortant Species		
Taxon	Estimated Total Number (x 10 ⁶)	Percent	Rank	Estimated Total Number (x 10 ⁶)	Percent	Rank
Grass shrimp	2585.15	13.50%	1	1514.66	4.02%	2
Sand shrimp	1816.09	9.48%	2	7331.66	19.47%	1
Blue crab	435.56	2.27%	3	75.87	0.20%	3
]	Finfish			
Taxon	Estimated Total	Percent	Rank	Estimated Total	Percent	Rank
	Number (x 10 ⁶)			Number (x 10 ⁶)		
Bay Anchovy	4260.61	79.91%	1	745.67	41.93%	1
Gobiidae	516.37	9.69%	2	239.50	13.47%	2
Cunner	157.67	2.96%	3	21.39	1.20%	10
Windowpane	79.42	1.49%	4	72.13	4.06%	5
Northern Pipefish	64.44	1.21%	5	33.05	1.86%	9
Tautog	62.71	1.18%	6	1.47	0.08%	14
Atlantic Croaker	44.29	0.83%	7	60.43	3.40%	6
Four-beard Rockling	30.90	0.58%	8	2.66	0.15%	13
Scianediae	23.68	0.44%	9	0		
Feather Blenny	22.56	0.42%	10	10.31	0.58%	12
Winter Flounder	10.48	0.20%	11	211.27	11.88%	3
Atlantic Menhaden	7.38	0.14%	12	38.85	2.18%	8
Hogchoker	6.33	0.12%	13	12.74	0.72%	11
Weakfish	3.38	0.06%	14	141.89	7.98%	4
Prinotus sp.	2.80	0.05%	15	60.43	3.40%	7

This data represents actual cooling water pump operations through the circulating water system. However, it does not include entrainment losses via the dilution/bypass water and therefore does not represent all entrainment losses at OCGS. In addition, this data was not corrected for gear efficiency or organism catchability, which is consistent with the historical sampling analysis.

The estimated total number of ichthyoplankton (all species combined) entrained during Year 2 was almost one third of the number entrained during Year 1. The difference between years was due primarily to entrained bay anchovy and cunner. Other species showing substantial inter-annual variability include Atlantic menhaden, hogchoker, and tautog. The family Sciaenidae appears absent in Year Two, but this change resulted from an increased resolution in classifying Sciaenids (e.g., spotted seatrout and weakfish) to the species level.

With respect to recreationally important species, higher numbers of weakfish and winter flounder were entrained in Year Two. Similarly, the number of winter flounder entrained increased from Year One to Year Two. Winter flounder was the third most common species entrained in Year Two; only bay anchovies and Gobiidae were entrained more often.

Comparison of Recent Year One and Year Two Entrainment Data with Historic Entrainment Data

In its 2007 Fishery Report and subsequent 2008 Characterization Report, the permittee compared the Year One and Year Two recent data with the historical data. Only those historic data with comparable sampling methods and sufficient information on sample volume/ sample time to yield comparable estimates of entrained organisms were retained for this report. Specifically, entrainment data sets from 1976 to 1981 were compared to the recent data sets (i.e. Year One and Year Two).

To ensure a clear understanding of available data, the Department has included a summary of the historical data from these years, as represented in the 1986 EA report, which is as follows:

Estimated Number Pumps at Oyster Ci						er and Dilutio	on/Bypass
Species	Lifestage	1975-1976		1976-1977		1977-1978	
		Condenser	Dilution	Condenser	Dilution	Condenser	Dilution
Silverside	Larvae	15.81	12.15	5.72	3.68	38.28	31.27
Bay anchovy	Larvae	1,152.09	1,158.82	457.41	297.71	497.35	533.39
Bay anchovy	Eggs	14,135.76	13,535.1	196.71	179.04	1,994.76	2,158.24
Winter flounder	Larvae	116.25	140.86	850.84	865.00	597.58	635.09
Sand lance	Larvae	27.57	36.92	109.77	109.35	142.28	151.69
Goby	Larvae	614.02	591.79	101.19	84.19	160.19	162.60
Naked goby	Juveniles	6.71	7.77	0.41	0.21	0.77	0.84
Blenny	Larvae	11.56	10.54	18.19	12.24	17.38	14.35
Northern pipefish	Juveniles	54.38	48.42	7.16	5.39	36.53	38.29
Species	Lifestage	1978-1979		1979-1980		1980-1981	
		Condenser	Dilution	Condenser	<u>Dilution</u>	Condenser	<u>Dilution</u>
Silverside	Larvae	66.50	55.52	5.14	1.71	105.56	98.94
Bay anchovy	Larvae	1,270.35	1,412.46	144.12	135.26	314.06	318.98
Bay anchovy	Eggs	3,029.43	3,241.40	475.44	322.38	3,818.59	3,914.51
Winter flounder	Larvae	1,077.08	808.80			126.05	128.36
Sand lance	Larvae	1,294.87	1,389.67			133.67	147.90
Goby	Larvae	85.64	97.21	188.49	144.17	187.79	202.61
Naked goby	Juveniles	0.27	0.31	1.82	1.81	1.93	2.91
Blenny	Larvae	4.01	4.40	8.43	6.26	4.12	4.37
Northern pipefish	Juveniles	30.69	33.29	17.37	14.48	42.06	39.03

Average Annual (x 10 ⁶)					
Species	Lifestage	Condenser	Dilution		
Silverside	Larvae	33.86	29.04		
Bay anchovy	Larvae	547.91	554.80		
Bay anchovy	Eggs	3,378.67	3,335.81		
Winter flounder	Larvae	461.30	429.69		
Sand lance	Larvae	284.69	305.92		
Goby	Larvae	191.05	183.22		
Naked goby	Juveniles	1.70	1.98		
Blenny	Larvae	9.10	7.45		
Northern pipefish	Juveniles	26.88	25.56		

d. Survivability via Circulating Water Intake System and Dilution Water Intake System

As part of the recent impingement and entrainment sampling effort performed as part of the PIC, survival data were calculated for the circulating water intake and dilution water intake to assess survivability through the traveling screens and dilution pumps. This data is presented in Appendix H of the 2008 Characterization Report.

Initial survival was calculated for impinged organisms at the circulating water intake structure. For Representative Species impinged at the circulating water intake structure, initial survival ranged from 30 to 40 percent for bay anchovy to 100 percent for summer flounder. This survival data is presented below.

Circulating Water Intake – Impingement Survivability					
	Year 1		Year 2		
Representative Species Taxa	Percent survival	Number (n)	Percent survival	Number (n)	
Atlantic croaker	85%	933	81%	69	
Atlantic menhaden	43%	258	96%	2,109	
Atlantic silverside	91%	471	91%	566	
Bay anchovy	30%	270	45%	237	
Blue crab	94%	6,056	96%	5,075	
Blueback herring	83%	24	84%	32	
Grass shrimp	91%	4,205	94%	4,031	
Northern pipefish	97%	229	79%	136	
Sand shrimp	93%	2,932	97%	6,166	
Summer flounder	100%	10	100%	29	
Weakfish	83%	23	88%	394	
Winter flounder	96%	45	96%	70	

Initial survival was calculated for impingeable-size organisms that passed through the dilution water intake system. As detailed in the table below, initial survival of Representative Species that was entrained through the Dilution Water Intake System ranged from 21 percent for weakfish to 94 to 95 percent for blue crab and winter flounder.

Dilution Water Intake System – Survivability of Impingeable-size Representative Species Year 1 and Year 2					
Representative Species Taxa	Percent survival	Number (n)			
Atlantic croaker	31%	45			
Atlantic menhaden	30%	394			
Atlantic silverside	83%	379			
Bay anchovy	35%	586			
Blue crab	95%	1,593			
Blueback herring	79%	48			
Grass shrimp	86%	901			
Northern pipefish	72%	36			
Sand shrimp	89%	1,363			
Summer flounder	67%	6			
Weakfish	21%	19			
Winter flounder	94%	18			

Data was insufficient to calculate initial survival for entrainable-size organisms through the circulating water intake system and dilution water intake system. A separate study assessed the mortality of impingeable-size organisms that pass through the dilution water intake system by using tagged juvenile striped bass. Initial survival for the tagged striped bass was 88 percent.

e. Department's Conclusions Regarding Impingement and Entrainment Data

To evaluate Section 316(b) of the Clean Water Act the Department refers to impingement and entrainment data sets. This data reflects the direct effects of the Station. An assessment of these effects is integral to defining alternatives to minimizing these losses. As noted at length above, the Department reviewed both historic and recent data in evaluating the impingement and entrainment effects of this facility. Based on this review, the Department concludes the following:

- While there are only two years of recent data available, a comparison of the recent data to the historical data shows that the magnitude of the number of species impinged is dramatically less for most species. Nonetheless, losses due to impingement and entrainment are significant in both recent and historical data.
- Recent data was insufficient to calculate initial survivability for entrainment at the circulating water intake structure and at the dilution water intake structure.
- There is a significant data gap encompassing over two decades for both impingement and entrainment. While there is some recent data, it is difficult to draw any long range conclusions given these interruptions in data.
- The shellfish species chosen as representative species are among the top four organisms impinged in both Year One and Year Two. The representative species include grass shrimp, sand shrimp and blue crab. These three species comprise approximately 84% of the total species impinged. However, grass shrimp losses were not ennumerated in the historical data set; therefore, a comparison of historical and recent data can not be made.
- Recent entrainment data was insufficient at the dilution pumps to estimate annual passage at this location. As a
 result, data collected at the circulating water intake was used to estimate entrainment at the dilution pumps. Since
 the dilution pumps represent over half the intake flow of Oyster Creek Generating Station, they account for a
 significant portion of all Station entrainment losses.
- Survivability data shows that the majority of organisms that are considered representative species survive impingement on the modified Ristroph travelling screens at the circulating water intake structure.
- In examining initial mortality of representative species at the dilution water intake structure eight of the species exhibited over 65% survival while four species showed less than 40% survival. Weakfish and Atlantic menhaden were the most vulnerable to entrainment of impingeable-size organisms while Blue crab and Winter flounder were the hardiest.

5. Available Intake Protection Technologies

a. Summary of "Determination of Cooling Tower Availability" Study

As noted previously, the Department issued a draft NJPDES permit on July 19, 2005 which required one of two alternatives. The Department specified that its preferred alternative was to reduce the intake capacity to a level commensurate with the use of a closed-cycle, recirculating cooling system. If the permittee demonstrated that this alternative was unavailable to the facility, a second alternative could be pursued.

To address the issue of cooling tower availability, URS, on behalf of the permittee, submitted a report entitled "Determination of Cooling Tower Availability" (hereafter "report") dated March 4, 2006. In this report, various cooling tower alternatives for OCGS were evaluated. This evaluation relied upon previous cooling tower studies, drawings, and design data to develop a conceptual model for the construction and operation of cooling towers at OCGS. The conceptual model was updated to account for new technologies, site conditions, environmental impacts and regulatory requirements.

As noted in this report, URS chose a conceptual model of a recirculating closed-cycle cooling system that consists of two multi-cell mechanical draft hybrid cooling towers. A hybrid cooling system, which is a combination of wet

Fact Sheet Page 20 of 42 NJPDES # : NJ0005550

evaporative cooling and dry cooling, was chosen because of the need for both consumptive water use reduction and plume abatement at this particular site. Additionally, the newly implemented security systems at OCGS can not be hindered by either an elevated plume or ground fog. A hybrid system can effectively eliminate a visible plume and ground fog at a lower cost and using less land area than air-cooled condensers. The reduction or elimination of a visible plume is, by necessity, the driving factor in the design of any cooling system at OCGS.

Since the primary purpose of installing a closed-cycle cooling system is to minimize intake and effluent flow volume, comparing the water balance as part of a closed-cycle cooling system to the current once-through cooling system is critical. An excerpt of the section from the URS report which outlines the water balance associated with the conceptual cooling tower design is as follows:

OCGS' current open-cycle cooling system has virtually no consumptive water use. With the addition of a closed cooling system, the water flow through the intake/discharge system is reduced. However, there is consumptive use of water. As water is evaporated in the cooling tower, the amount of dissolved and suspended solids and minerals in the water become concentrated. If left uncontrolled, these chemicals will inhibit the operation and efficiency of the cooling tower with a buildup of slime and scale.

To control scale and slime build-up, a certain percentage of water is discharged (as "blowdown") from the cooling tower basin into the discharge canal. Makeup water that is pumped to the cooling tower replenishes the water evaporated and the blowdown water. The ratio of total dissolved solids (TDS) in the recirculating water to the TDS in the makeup water is termed "the cycles of concentration". Cooling towers using makeup water with low dissolved impurities typically operate with a cycle of concentration factor between seven and ten. The industry standard for cooling towers using salt water or brackish water, such as at the OCGS site, is two or less cycles of concentration....

Two 10,000 gpm pumps would be used to supply the makeup water to the cooling tower. The makeup water would be supplied from the intake canal and sent to a filter skid to remove silt and other foreign substances.

During the summer, when the hybrid cooling tower would be operating in full evaporative cooling mode, the average makeup water supply would be approximately 14,000 gpm. Using a cycle of concentration factor of two means that half the makeup water flow (7000 gpm) is returned to the discharge system as blowdown with the other half evaporated. Thus, the average consumptive use of intake water during the summer is approximately 7000 gpm.

In the event that there are no circulating water pumps available, such as during the maintenance of the pump, intake tunnel, or main condenser, at least one of the three dilution pumps must be available to meet OCGS' procedural requirements. The available pump will also allow water from the intake canal to be available to supply other emergency needs.

In addition to having operational dilution pumps available, a single dilution pump must remain in operation to:

- prevent the stagnation of water and accumulation of silt in the intake and discharge canals
- provide thermal dilution of warm blowdown water (from the cooling tower circulating water outlet line) at the discharge canal
- provide dilution of concentrated and trace elements in the blowdown water within the discharge canal

One dilution pump (260,000 gpm), with a makeup design requirement of 20,000 gpm, would create a total flow through the intake canal of approximately 280,000 gpm. The flow through the discharge canal would be approximately 270,000 gpm, or about 30 percent of the flow of the current open-cycle system.

As noted in this report, it is estimated that the cost of a hybrid dry cooling tower is between 705 million dollars and 801 million dollars over a ten year period. Costs include (in descending order): 1) construction (material and labor); 2) lost energy revenue; 3) lost energy during outage; 4) risk factor; 5) added real estate taxes; 6) maintenance/chemicals; 7) added security personnel; 8) added operators; 9) lost capacity revenue; 10) lost capacity during outage; 11) environmental/public relations; 12) dislocation of master plan; 13) added insurance. It is therefore concluded in this report that based on the technical and engineering difficulty of retrofitting the existing OCGS station with this alternative as well as the associated costs, cooling towers are unavailable under Section 316(b) of the Clean Water Act.

The calculated average annual net power loss with a hybrid cooling tower system would be 32.5 MW. Specifically, OCGS currently operates at 641 MWe whereas a closed-cycle cooling system would result in the plant operating at 609 MWe.

An excerpt of this URS report which outlines the timing involved in retrofitting the facility with closed cycle cooling is as follows:

Considering the environmental regulatory issues that surround the towers, URS expects that at least two years must be allowed for regulatory approvals. Construction would be a minimum of three years.

b. Department's Conclusions Regarding Available Intake Protection Technologies Considering Impingement and Entrainment Data

The Department recognizes that Ristroph traveling screens at OCGS are a proven and effective technology to minimize impingement mortality. Constant screen rotation and low pressure washes serve to reduce impingement mortality by assisting organisms into the fish return system. The fish return system is designed in a manner that minimizes stresses as it was constructed with a gentle slope with various quiet pools to allow the fish to orient themselves in the current. The fish return system does not divert these organisms to the heated discharge but rather to the dilution pump discharge which is not heated or chlorinated. Recent survivability data demonstrates that many species show high survivability on the Ristroph screens. In sum, the Department agrees that impingement mortality is minimized at the circulating water intake.

However, the circulating water intake represents less than half the total intake flow at the facility. There is no technology employed at the dilution pumps therefore all species are entrained. The dilution pumps are designed with some fish friendly attributes such as few and widely spaced impellers and low rotation speed and survivability data for impingeable sized organisms shows high survivability for some species. However, the intake flow is significant and therefore so are losses even with some survivability.

Beyond Ristroph traveling screens, there are limited intake protection technologies to effectively reduce impingement mortality. In addition, there are even fewer intake protection technologies to reduce entrainment. While the EPA Phase II Rule is suspended, its findings regarding intake protection technology are still valid. Specifically, on page 41601 of the Phase II regulation the following is stated:

...EPA believes the record contains ample evidence to support the proposition that entrainment is related to flow.....while impingement is related to a combination of flow, intake velocity and fish swim speed....Larger withdrawals of water may result in commensurate greater levels of entrainment. Entrainment impacts of cooling water intake structures are closely linked to the amount of water passing through the intake structure because the eggs and larvae of some aquatic species are free-floating and may be drawn with the flow of cooling water into an intake structure. Swim speeds of affected species as well as intake velocity must be taken into account to predict rates of impingement in relation to flow in order to account for the ability of juvenile and adult life stages of species to avoid impingement. Due to this relationship, EPA agrees that reducing intake by installing flow reduction technologies will result in a similarly high reduction of impinged and entrained organisms.

The Department has completed its review of the March 4, 2006 "Determination of Cooling Tower Availability". To summarize the findings of this report, the difference in flows between the closed-cycle cooling system and current once through system is as follows:

	Current Once-	Conceptual Closed-	Percent Change from
	Through Cooling	Cycle Cooling	Current System
Intake Flow			
Circulating Water System	662	N/A	
Dilution Pumps	748	374*	
Cooling Tower Make-up	N/A	29	
Total Intake Flow	1410	403	-71%
Effluent Flow			
Circulating Water System	662	N/A	
Dilution Pump	748	374*	
Cooling Tower Blowdown	N/A	14	
Total Effluent Flow	1410	388	-72%

* It is contended in this report that operation of a dilution pump is necessary. This summary of flow reductions assumes that this contention is accurate.

If cooling towers were to be constructed and operated, there would still be an intake and discharge from this facility. In addition, there would be other environmental impacts including, but not limited to, continued impingement and entrainment effects, thermal loading from the discharge, concentrated pollutants in cooling tower blowdown, salt deposition from air emissions, fogging, noise and visual impacts.

6. <u>Section 316(b) Determination in this Renewal Permit</u>

In consideration of the above information and based upon the following factors, the Department has determined that the **best technology available determination** in accordance with its best professional judgment is as follows:

- Pursuant to the December 9, 2010 Administrative Consent Order ("ACO"), Exelon is legally required to **Terminate Operations**, as that term is defined in the December 9, 2010 ACO, no later than **December 31**, 2019. As a direct result of this requirement, the Department has determined that **closed cycle cooling is not the best technology available** given the length of time that would be required to retrofit from the existing once-through cooling system to a closed-cycle cooling system and the limited life span of the facility after implementation of the closed-cycle cooling system. The facility has physical limitations which constrain the location and types of closed-cycle cooling systems that could be installed. As stated in the January 7, 2010 draft permit, the length of time required to design, permit and construct closed-cycle cooling technology at the facility would likely be at least seven years and would involve significant costs.
- In consideration of the required Termination date, the Department has determined, in its best professional judgment, that the Station's existing once-through cooling system, which is equipped with a number of existing measures to reduce impingement mortality and entrainment losses, including a system of Ristrophtype screens and fish handling mechanisms, is the best technology available for the facility's cooling water intake through Termination and with respect to Post-Termination activities as defined in paragraph I of the Findings of the December 9, 2010 ACO.
- If this permit is administratively extended and remains in effect as of January 1, 2020, beginning on that day the permittee shall no longer be authorized to withdraw up to 662.4 million gallons per day (MGD) of noncontact cooling water through the Circulating Water Intake and up to 748.8 MGD of water through the Dilution Water Intake. Rather, on and after January 1, 2020, the Permittee shall reduce its surface water intake to the greater of 40,000 gallons per minute or the flow commensurate with that achievable using closed-cycle cooling.

Given that the Termination date of December 31, 2019 is the cornerstone of the BTA determination and hence a requirement of this NJPDES permit, the Permittee shall take the following steps, within the time set forth in the below **implementation schedule**, consistent with a process to Terminate Operations no later than December 31, 2019:

- By December 31, 2013, Exelon shall certify in writing to the Department's Bureau of Surface Water Permitting that the fuel parameters and planning for the 2014 plant outages are to be based on a five-year period of operation ending on December 31, 2019, and not the standard six-year period;
- By December 31, 2014, Exelon shall take into account the Termination in the calculation of the anticipated decommissioning cost and earnings estimates for the Station, which shall be included in the biennial or annual reports regarding decommissioning funding assurance submitted to the USNRC;
- By December 31, 2014, Exelon shall include in the next biennial or annual report to the USNRC regarding decommissioning funding assurance the fact that Exelon intends to Terminate Operations on or before December 31, 2019, and shall have the anticipated decommissioning cost and earnings estimates reflect that date:

- By December 31, 2014, Exelon shall certify in writing to the Department's Bureau of Surface Water Permitting that the Station's five-year outage schedule lists the 2018 outage as the final scheduled refueling outage;
- By May 31, 2016, Exelon shall certify in writing to the Department's Bureau of Surface Water Permitting that the Station's output was not bid into the PJM capacity market auction for delivery after December 31, 2019;
- By December 31, 2018, Exelon shall submit the Post-Shutdown Decommissioning Activities Report ("PSDAR") to the USNRC based on the December 31, 2019 Termination, in accordance with 10 CFR 50.82(a)(4)(i).

In furtherance of the requirement to Terminate Operations on or before December 31, 2019, the following **operating conditions** shall be met:

- Permittee shall maintain the facility throughout its period of operation in a manner that ensures operation is fully in accord with its permits and consistent with the operating license issued by the USNRC;
- Permittee shall not sell or otherwise transfer the facility to another entity for use as a facility for generation of electric power except as provided in the ACO;
- Permittee shall apply for a renewal permit which also provides for the required Termination date of December 31, 2019 at least 180 days prior to the expiration of the final permit in accordance with N.J.A.C. 7:14A-4.2(e)3;
- Permittee shall not seek a modification of the NJPDES permit for operations beyond Termination, unless it can meet the intake flow conditions set forth in the best technology available determination set forth in the Section 316(b) Determination above.

Finally, the permittee shall submit to the Department's Bureau of Surface Water Permitting **annual progress reports** that shall outline progress toward Termination. Progress reports shall be submitted according to the following schedule:

- Submit an Implementation Schedule Progress Report: within 12 months from the effective date of the permit (EDP).
- Submit an Implementation Schedule Progress Report: within 24 months from the EDP.
- Submit an Implementation Schedule Progress Report: within 36 months from the EDP.
- Submit an Implementation Schedule Progress Report: within 48 months from the EDP.
- Submit an Implementation Schedule Progress Report: within 60 months from the EDP and annually thereafter for any period that the permit is administratively extended.

This above referenced conditions of this determination are consistent with the December 9, 2010 ACO between the Department and Exelon. These conditions are also included in Part IV of this permit.

B. Section 316(a) Determination

1. Regulatory Background - Thermal Surface Water Quality Standards (SWQS) and Section 316(a)

Surface Water Quality Standards (SWQS) for SE1 waters are established in N.J.A.C. 7:9B-1.1 et seq. and are applicable to the Barnegat Bay, Forked River, and Oyster Creek. These standards require that ambient water

Fact Sheet Page 24 of 42 NJPDES #: NJ0005550

temperatures in the receiving waters shall not be raised by more than 2.2° C (4° F), from September through May, nor more than 0.8° C (1.5° F) from June through August, nor cause temperatures to exceed 29.4° C (85° F), except in designated heat dissipation areas. SWQS provide that "heat dissipation areas" in "streams" (including SE waters) shall not exceed one-quarter (1/4) of the cross section and/or volume of the water body at any time; nor more than two-thirds (2/3) of the surface from shore to shore at any time. SWQS further provide that these "heat dissipation areas" limits:

"...may be exceeded by special permission, on a case-by-case basis, when a discharger can demonstrate that a larger heat dissipation area meets the tests for a waiver under Section 316 of the Federal Clean Water Act."

SWQS provide that for bays, "heat dissipation areas" will be developed on a case by case basis at N.J.A.C. 7:9B-1.14 (c)(11)(ii)(2).

Section 316(a) of the Federal Clean Water Act regulates the thermal component of surface water discharges. Specifically, Section 316(a) authorizes variances from thermal SWQS where it is shown that the alternative limit proposed will "assure the protection and propagation of a balanced, indigenous population of shellfish, fish, and wildlife" in the receiving water. With respect to existing dischargers, 40 CFR 125.73(c) states the following:

- (1) Existing discharges may base their demonstration upon the absence of prior appreciable harm in lieu of predictive studies. Any such demonstrations shall show:
- (i) That no appreciable harm has resulted from the normal component of the discharge taking into account the interaction of such thermal component with other pollutants and the additive effect of other thermal sources to a balanced, indigenous community of shellfish, fish and wildlife in and on the body of water into which the discharge has been made; or
- (ii) That despite the occurrence of such previous harm, the desired alternative effluent limitations (or appropriate modifications thereof) will nevertheless assure the protection and propagation of a balanced, indigenous community of shellfish, fish and wildlife in and on the body of water into which the discharge is made.
- (2) In determining whether or not prior appreciable harm has occurred, the Director shall consider the length of time in which the applicant has been discharging and the nature of the discharge.

2. Section 316(a) Determination in Previous Permits and Section 316(a) Permit Conditions

As noted previously, in 1987 the Department engaged Versar, Inc. as an independent contractor to assist in reviewing the permittee's Section 316(a) and (b) Demonstration. As described in the 1989 Versar Report, Versar reviewed the extent of the thermal plume from the Station based on dye plume mapping, thermal plume mapping, recirculation studies and hydrothermal modeling submitted by the permittee and other agencies.

In the June 30, 1994 draft renewal permit, the Department made a determination that the existing thermal limitations and operating requirements met the 316(a) criteria based on the findings of the permittee's 1987 316(a) study. However, the existing permit requires a number of operating and monitoring conditions to ensure that thermal effects were minimized during critical periods. These conditions were continued in the July 19, 2005 and January 7, 2010 draft renewal permits and can be summarized and justified as follows:

• <u>Planned Winter Shutdown Conditions</u> – The permittee shall not schedule routine shutdowns during the months of December, January, February, and/or March to reduce the possibility of a fish-kill resulting from cold shock. The permittee shall also not schedule routine maintenance that may cause violation of thermal limitations or intake velocity limitations during the months of June, July, August, and/or September. The Department acknowledges that the NJPDES Regulations require the permittee to maintain its plant in good working order and efficient operation and, therefore, some maintenance may be required.

Fact Sheet Page 25 of 42 NJPDES # : NJ0005550

Basis and Background to Planned Winter Shutdown Condition - Many fish species initiate their autumn migration from temperate estuarine areas such as Barnegat Bay to southern areas or deeper oceanic waters in response to temperature cues. Fish commonly thermoregulate by seeking water having temperature closer to their thermal preference. As a consequence, during the autumn, winter, and spring, fish are attracted to areas such as the Oyster Creek Discharge Canal, which acts to confine heated water from condenser cooling. Upon winter shutdowns of the Station, the thermal discharge from condenser cooling ceases and the temperature of this area quickly reverts towards ambient.

Provisions in the 1987 NJPDES permit regarding planned winter shutdowns of the Station required the permittee to avoid scheduling shutdowns during the months of December, January, February, and March. These provisions were, for the most part, based on a permit issued by USEPA. The restriction on planned winter shutdowns was included in the 1987 and 1994 NJPDES permits to lessen the probability of winter shutdown fish kills associated with cold shock.

• <u>Temperature Monitoring at Route 9 Bridge</u> – The permittee is required to continuously monitor temperature at a point four feet below the surface of Oyster Creek at the Route 9 bridge. A maximum temperature action level of 97 °F (36.1 °C) shall be continued in this permit action. Upon exceedance of this action level, the permittee may be required to conduct and submit an Effluent Temperature Evaluation Study (ETES) as detailed in Part IV of the permit. Temperature results from this location shall also determine when dilution pumps become operational.

Basis and Background to Temperature Monitoring at Route 9 Bridge - In order to ensure that the temperature of the water at the point it enters Barnegat Bay remains approximately at the temperature that was used in the Section 316(a) determination, the Department is requiring the Station to continue to monitor water temperature at the Route 9 Bridge. If the temperature is monitored above 97°F, the Station is required to submit a written report to the Department stating the reason for such. If the temperature increase is due to (a) unusually high influent temperature, i.e., any influent temperature in excess of 85° F; (b) operation of the Dilution Pumps in accordance with Part IV; or (c) implementation of the alternate effluent limitations in accordance with a Maximum Emergency Generation event as defined in this permit, the Station is required to do no more. If the temperature increase is not attributable to any of the above, the Station is required to conduct an Effluent Temperature Evaluation Study ("ETES") as detailed in Part IV to identify the cause of the temperature increases and to implement measures to prevent the temperature increase from occurring again.

The Station's exceedance of the temperature monitoring action level of 97 degrees Fahrenheit is not a violation of the permit for which an enforcement action could be taken. The Station's failure to report an exceedance, to provide the Department with a written report providing reasons for the exceedance or to conduct the ETES in the time frames and manner established in the permit would, however, constitute violations of the permit for which enforcement action could be instituted.

• Maximum Emergency Generation – The permittee is permitted to increase its heat load, effluent temperature and delta T limitations for outfall DSN 001A during a Maximum Emergency Generation event as ordered by the PJM Interconnection Office of Information Dispatcher in accordance with Section 2 (Capacity Conditions) of the PJM Interconnection Emergency Operations Manual M-13, dated October 10, 1998 and any subsequent revisions thereto. Within 8 hours of the permittee being advised that a Maximum Emergency Generation event has been ordered, the permittee must notify the Department by telephone declaring that the Station has invoked the use of the alternate thermal limits of the permit. The Station must follow-up the telephone notification within five working days with a written report setting forth the following: the time and date of the telephone notification to the Department, the time and date the Station actually invoked relief under this permit condition, and the time and date it terminated such relief.

<u>Basis and Background to Maximum Emergency Generation Condition</u> – This condition ensures that ample power is provided to the grid during extreme conditions such as weather. Note that the terminology for this condition was specified as Emergency Need for Power in the 1994 permit which was replaced with the term

Fact Sheet Page 26 of 42 NJPDES # : NJ0005550

Maximum Emergency Generation in the 2005 and 2010 draft permits. This change in terminology was necessary to reflect revisions to the PJM Interconnection Emergency Operations Manual.

In sum, the Department proposed to continue those thermal limitations and operating requirements described above in the July 19, 2005 and January 7, 2010 draft permit action and thereby grant a thermal variance in accordance with Section 316(a) of the Clean Water Act. In addition to the above, the variance contained in the July 19, 2005 and January 7, 2010 draft permits was based on the fact that the facility's operations have not changed appreciably since the time that the existing permit was issued and based on the fact that cooling water intake flow rates have remained relatively constant.

3. Section 316(a) Determination in this Renewal Permit

In the May 28, 1999 application, the permittee requested that the 316(a) variance that was granted for the current permit be reissued based on similar factual and operational conditions at the time of application.

In evaluating the renewal of the Section 316(a) variance for the purposes of the July 19, 2005 and January 7, 2010 draft permits, the Department evaluated discharge monitoring report data with respect to flow and temperature. Based on this review, the Department determined that the operating characteristics are at or near the bounds of previous years' data since 1994 which is when the last thermal variance was finalized. As a result, the Department determined that operating characteristics which served as a basis for the 1994 decision were similar to current operating conditions. As a result, in the January 7, 2010 and July 19, 2005 draft NJPDES permits, the Department proposed to grant a thermal variance for the existing once-through cooling system.

As noted previously, pursuant to the December 9, 2010 Administrative Consent Order ("ACO"), Exelon is legally required to **Terminate Operations**, as that term is defined in the December 9, 2010 ACO, no later than **December 31**, **2019**. After December 31, 2019 the thermal discharge from the Station will be significantly reduced both in flow volume and in heat content. As a result, the Department is hereby granting a Section 316(a) variance for the facility's cooling water discharge for the once-through cooling system until the facility is required to Terminate Operations in 2019. This determination is based on the Department's findings that: (1) the thermal discharge from the station will be significantly reduced both in flow volume and in heat content; (2) the facility's operations have not changed appreciably since the time that the 1994 NJPDES permit was issued; (3) cooling water flow rates have remained relatively constant.

While the once-through cooling system is operational and up until December 31, 2019, the Department retains all the Section 316(a) conditions. This includes the conditions for planned winter shutdown and temperature monitoring at the Route 9 bridge. In addition, effluent limitations for effluent temperature, temperature difference between intake and discharge, and net rate of addition of heat under two scenarios that are identified in this permit as Option 1 and Option 2 limits have been retained. Option 1 limits are applicable when four circulating water pumps are operating for condenser cooling.

Option 2 limits shall be applicable during periods of condenser backwash, intake component maintenance or during an Emergency Condition. Specifically, the Permittee shall comply with "Option 2 Limits" for outfall DSN 001A during an Emergency Condition as declared by the PJM Interconnection Office of Information Dispatcher, including Capacity, Weather/Environmental, Sabotage/Terrorism, and Transmission Security Emergencies as such terms are defined in the PJM Interconnection Emergency Operations Manual M-13, Emergency Operations, Revision 41, effective October 1, 2010, provided that the number of days per year when such Emergency Conditions apply shall not exceed 20. Within eight hours of the Permittee being advised by PJM that Emergency Operations are required, the Permittee shall notify DEP's Central Bureau of Water Compliance and Enforcement by telephone that the Station has invoked the use of the alternate thermal limits of the permit. This provision is slightly modified as compared to the existing permit. Specifically, the terminology has changed to "Emergency Condition" to reflect changes in the PJM Manual that have occurred since the issuance of the 1994 permit and an upper limit of 20 days has been established. An explanation of these conditions is also specified as items G.2.i. of Part IV.

9 Federal Consistency Determination for Federal Nuclear Regulatory Commission License Renewal

Impingement and entrainment and the thermal discharge from Oyster Creek Generating Station results in impacts to aquatic life. Section 316(b) is the statute that regulates impingement and entrainment impacts and Section 316(a) addresses thermal impacts. In addition, the issue of impacts has relevance within the context of the Federal Consistency Determination pursuant to Section 307 of the federal Coastal Zone Management Act of 1972 (P.L. 92-573), as amended. To ensure that the issue is fully addressed, the Department has included a summary of the Federal Consistency Determination administrative history, technical submittals and conclusions.

The Federal Consistency Determination was required pursuant to the federal Coastal Zone Management Act (CZMA) as a result of AmerGen (the permittee at that time) applying to a federal agency for a license renewal of an existing facility within New Jersey's Coastal Zone. In this case, the permittee requested that the United States Nuclear Regulatory Commission (USNRC) relicense the facility for a period of 20 years, or until 2029. The Department's Coastal Zone Management rules at N.J.A.C. 7:7E represent the standards for reviewing the Federal Consistency Determination request. The Federal Consistency Determination was issued by the Department's Land Use Regulation Program on December 28, 2007. The USNRC license extension was granted on April 8, 2009.

To provide the administrative history, AmerGen submitted an application for a Federal Consistency Determination Request for License renewal of AmerGen's Oyster Creek Generating Station on January 21, 2005. By letter of March 31, 2005, the Division of Land Use Regulation advised AmerGen that the State agency's review had begun and a decision was due on or before July 21, 2005. In addition, the March 31, 2005 Division of Land Use Regulation letter requested information to address application deficiencies. The Division of Land Use Regulation requested that the applicant submit the information and an analysis of that information to support the following assertions made by the permittee:

- The impacts of entrainment and impingement during current operations are being monitored on a continual basis;
- The Ristroph traveling screens currently being used reduce the number of fish impinged and impingement mortality;
- The water quality of Barnegat Bay, which had been in decline, is recovering and now supports a healthy fish population; and
- The impacts of heat shock during current operations are also being monitored on a continual basis.

As described previously, impingement and entrainment data was already being collected, consistent with the Proposal for Information Collection. The collection of this data was a direct result of the requirement for a Comprehensive Demonstration Study in the now suspended Phase II EPA Regulations for Section 316(b). Impingement and entrainment data was collected for two years (i.e. Year 1 and Year 2) and was submitted in the 2007 Fishery Data Report. This information was utilized in for two regulatory purposes, namely Section 316(b) and the FCD request.

A summary of the December 28, 2007 FCD issued by the Department's Land Use Regulation program to Oyster Creek Nuclear Generating Station (OCNGS) is as follows:

...The continued operation of the OCNGS, which is the subject of this FCD request, is subject to review pursuant to the CZM rules. The scope of this review is focused on the continued operation of the facility on the coastal environment.

The operation of the OCNGS is causing an impact on the estuarine environment specifically to marine fish and fisheries, through the once-through cooling process. Specifically, fish and shellfish are impinged on the cooling water intake screens, entrained through the circulating water system and the dilution pumps, and subjected to thermal impacts from discharge water. While the applicant has provided two years of recent monitoring data (encompassing a period from 2005 through 2007) to supplement previous data collected and to quantify the impacts from impingement and entrainment, the long-term effects on the coastal ecosystem are difficult to quantify. The difficulty in making this assessment is due to a number of factors listed below, some of which are not well-understood by the scientific community:

Fact Sheet Page 28 of 42 NJPDES # : NJ0005550

- Lack of long-term biological monitoring data throughout Barnegat Bay;
- Non-point source pollution loading into the Bay;
- Nitrogen loading into the Bay from various sources (air deposition, groundwater discharge, non-point source pollution);
- Extensive motorized boat and jet-ski usage throughout the Bay;
- Eutrophication within the Bay;
- Loss of wetland and other estuarine habitat;
- Changes in tidal regime within the estuary resulting from reconstruction of the Barnegat Inlet south jetty; and
- Development on the Bay and within the Barnegat Bay Watershed, including docks, piers, bulkheads and other waterfront structures.

Given the fact that the facility was built in 1968, and the difficulty in drawing a clear nexus between the continued operations of OCNGS and the Bay impairments, the applicant has proposed various mitigation activities intended to offset any impacts of continued operation. All of these activities are proposed to be funded by AmerGen and conducted under the direct supervision of the Department's Division of Fish and Wildlife. Environmental enhancement/mitigation activities proposed by the applicant, as outlined in letters from AmerGen dated September 13, 2007 and November 30, 2007 include:

- Tidal wetland restoration
- Hard Clam Bed restoration
- Oyster Bed restoration
- Enhance public access to and use of the Barnegat Bay waterfront

As noted previously, there are limited intake protection technologies to address entrainment. Restoration is an alternative that could be used at OCGS as a means to offset losses. Therefore, the Department hereby acknowledges any benefits that may come of the above referenced projects via the CZMA process.

10 Type and Quantity of the Wastes or Pollutants:

The Permit Summary Table near the end of this fact sheet contains a summary of the quantity and quality of pollutants treated and discharged from the facility and the proposed effluent limitations.

11 Summary of Chemical-Specific Permit Conditions:

The proposed effluent limitations and other pertinent information regarding the draft permit are described below:

A. Basis for Effluent Limitations and Permit Conditions - General:

The effluent limitations and permit conditions in this permit have been developed to ensure compliance with the following:

- 1. NJPDES Regulations (N.J.A.C. 7:14A),
- 2. New Jersey Surface Water Quality Standards (N.J.A.C. 7:9B),
- 3. New Jersey's 2008 Integrated Water Quality Monitoring and Assessment Report (include 305(b) Report and 303(d) List),
- 4. Existing permit limitations in accordance with N.J.A.C. 7:14A-13.19 and 40 CFR 122.44 (antibacksliding requirements),
- 5. Permit limitations in accordance with N.J.A.C. 7:9B-1.5(d) (antidegradation requirements),
- 6. Statewide Water Quality Management Planning Rules (N.J.A.C. 7:15),
- 7. Technology Based Treatment Requirements or Effluent Limitation Guideline Requirements (N.J.A.C. 7:14A-13.2 to 13.4),
- 8. 40 CFR Part 423 Steam Electric Power Generating Point Source Category
- 9. 40 CFR Part 125, Subpart H

Fact Sheet Page 29 of 42 NJPDES # : NJ0005550

Technology based limitations are authorized by Section 301 of the Clean Water Act, 40 CFR 122, N.J.S.A. 58:10A-4, and N.J.A.C. 7:14A-13.2(a)1.ii., 13.3(b), and 13.4. In general, effluent limitations are based on Effluent Limitation Guidelines (ELGs), developed by the United States Environmental Protection Agency (USEPA), or on case-by-case limitations developed through a Best Professional Judgment (BPJ) analysis in cases where ELGs are not available or appropriate. ELGs are minimum technology based requirements applicable on a nation-wide basis and are published in 40 CFR Subchapter N. ELGs consider the category of industry that produce common pollutants taking into account the specific factors unique to a particular type of industry (manufacturing process, type and quantity of pollutants generated, types of treatment facilities available to treat the pollutants, etc.). In cases where ELGs are applicable for surface water dischargers, ELG loading limitations are calculated using the specified concentration value and the production information provided by the permittee. BPJ determinations are authorized by Section 402 (a)(1) of the Clean Water Act.

Effluent Limitation Guidelines (ELGs) are applicable to this facility in accordance with 40 CFR 423, the Steam Electric Power Generating Point Source Category. Where applicable, these guidelines were used to develop effluent limitations for the discharges from this facility unless a more stringent federal, state, or local effluent limitation was applicable.

In accordance with N.J.A.C. 7:14A-13.5, Water Quality Based Effluent Limitations (WQBELs) are imposed when it has been determined that the discharge of a pollutant causes an excursion of criteria specified in the New Jersey Surface Water Quality Standards (SWQS), N.J.A.C. 7:9B-1.1 et seq., and the Federal Water Quality Standards, 40 CFR Part 131. WQBELs are authorized by Section 301 of the Clean Water Act, 40 CFR 122, N.J.S.A. 58:10A-4, and N.J.A.C. 7:14A-13.2 and 13.3. The procedures used to develop WQBELs are contained in the State and Federal Standards. Specific procedures, methodologies, and equations are contained in the current USEPA "Technical Support Document for Water Quality-based Toxics Control" (TSD) (EPA- 505/2-90-001) and are referenced in N.J.A.C. 7:14A-13.5 and 13.6.

Expression of all effluent limitations are in accordance with N.J.A.C. 7:14A-13.14 and 13.15.

Whole effluent toxicity limitations are expressed as a minimum as a percent.

B. Basis and Derivation for Effluent Limitations and Monitoring Requirements-Specific:

All permit limitations and conditions in this permit action, are equal to or more stringent than those contained in the existing permit action. As a result, this permit action satisfies the federal and state anti-degradation regulations 40 CFR 131.12 and N.J.A.C. 7:9B-1.5(d), and no further anti-degradation analysis is necessary.

DSN 001A: Non-Contact Cooling Water (approximately 592 MGD)

- 1. <u>Flow</u>: This permit does not include a numerical limitation for flow. Monitoring conditions for effluent and intake are applied pursuant to N.J.A.C. 7:14A-13.13. Monitoring is required on a **continuous** basis (15 minute average per calculation) with a **calculated** sample type.
- 2. <u>pH</u>: The effluent limitations of 6.5 standard units as a monthly minimum and 8.5 standard units as a monthly maximum are consistent with the existing permit and are imposed in accordance with N.J.A.C 7:14A-13.19. A condition for monitoring intake pH has been included since a narrative condition regarding pH compliance has been included in Part IV A.1.j.

Monitoring for pH shall be conducted **twice/week** with a **grab** sample type.

3. Effluent Temperature, Intake Temperature, Temperature Difference Between Intake and Discharge, Net Rate of Addition of Heat: The effluent limitations and/or monitoring requirements are originally based on the findings of the permittee's 1987 316(a) study and are retained from the existing permit in accordance with N.J.A.C 7:14A-13.19. Additional information regarding temperature and heat limitations is included in the Section 316(a) determination discussed previously in this Fact Sheet.

Temperature shall be monitored on a **continuous** basis (15 minute averages per calculation) with a **grab** sample type.

Consistent with the existing permit, the Department has continued effluent limitations for effluent temperature, temperature difference between intake and discharge, and net rate of addition of heat under two scenarios that are identified in this permit as Option 1 and Option 2 limits. Option 1 limits are applicable when four circulating water pumps are operating for condenser cooling. Option 2 limits shall be applicable during periods of condenser backwash, intake component maintenance or during an Emergency Condition. An explanation of these conditions is also specified as items G.2.h., G.2.i. and G.2.j. of Part IV.

- 4. <u>Intake Velocity</u>: The daily maximum limitation for intake velocity of 2.2 feet per second is imposed consistent with the existing permit pursuant to N.J.A.C 7:14A-13.19. This limitation was imposed in the existing permit to reduce impingement and entrainment at the cooling water intake. Additional information regarding intake velocity is included in the Section 316(b) determination discussed previously in this Fact Sheet. The intake velocity limit is also indicated as item G.4.a. of Part IV.
- 5. <u>Chlorine Produced Oxidants (CPO)</u>: In accordance with the Surface Water Quality Standards N.J.A.C. 7:9B-1 <u>et seq</u>. Total Residual Chlorine (TRC) is now referred to as CPO. The term CPO is simply a more appropriate name for the compounds which the TRC test measures. The TRC test measures not only residual chlorine, but the sum of free and combined chlorine and bromine as well.

The daily maximum limitation of 0.2 mg/L is based on 40 CFR 423.13(b)(1), N.J.A.C. 7:9B-1.6(c), and is retained from the existing permit consistent with the provisions of N.J.A.C 7:14A-13.19. Monthly average monitoring and reporting is also required.

A narrative condition has been included as item E.1.f.. of Part IV to ensure that chlorination only occurs for two hours per day consistent with 40 CFR Part 423. An additional CPO limit on a concentration basis applies to the turbine building closed cooling water heat exchanger. Data for this wastestream shall be tracked on monitoring report forms.

CPO shall be monitored **daily** with a **grab** sample.

6. Whole Effluent Toxicity (WET): Section 101(a) of the Clean Water Act (CWA) establishes a national policy of restoring and maintaining the chemical, physical and biological integrity of the Nation's waters. In addition, section 101(a)(3) of the CWA and the State's Surface Water Quality Standards (SWQS) at N.J.A.C. 7:9B-1.5(a)3 state that the discharge of toxic pollutants in toxic amounts is prohibited. Further, 40 CFR 122.44(d) and N.J.A.C. 7:14A-13.6(a) require that where the Department determines using site-specific WET data that a discharge causes, shows a reasonable potential to cause, or contributes to an excursion above the SWQS, the permitting authority must establish effluent limits for WET.

Acute WET sampling was imposed in the existing permit at a quarterly monitoring frequency. The Department issued a modification on November 26, 1996 that reduced the monitoring frequency to annual. Since January 1995, the permittee has consistently reported an acute result of LC50>100% for this discharge. However, given the significant volume of this discharge, the Department has retained **annual** sampling. A **composite** sample type shall be used.

The test species method to be used for acute testing shall be the *Mysidopsis bahia* 96 hour definitive test. Such selection is based on the saline characteristics of the receiving stream, the existing permit, N.J.A.C. 7:9B-1.5 and N.J.A.C. 7:18, the Regulations Governing the Certification of Laboratories and Environmental Measurements (N.J.A.C. 7:18).

7. Mercury and Boron: Monitoring for mercury and boron has been included as per EPA Region 2's request. Monitoring for mercury has been included where method 1631E shall be utilized to ensure compliance with

Fact Sheet Page 31 of 42 NJPDES # : NJ0005550

surface water quality standards if it is determined that cause or reasonable potential to violate water quality standards is demonstrated. Monitoring for boron is being imposed considering the permittee's operations. Monitoring for mercury is being required on a **semi-annual** basis and monitoring for boron is being required on an **annual** basis. Monitoring for both parameters shall be performed with a **grab** sample type.

DSN 002A - Non-Contact Cooling Water (3.5 MGD)

1. <u>Flow</u>: This permit does not include a numerical limitation for flow. Monitoring conditions are applied pursuant to N.J.A.C. 7:14A-13.13.

Monitoring is required **twice per month** with a **calculated** sample type.

2. <u>pH</u>: The effluent limitations of 6.5 standard units as a monthly minimum and 8.5 standard units as a monthly maximum are consistent with the existing permit and are imposed in accordance with N.J.A.C 7:14A-13.19. A condition for monitoring intake pH has been included since a narrative condition regarding pH compliance has been included in Part IV A.1.j.

Monitoring for pH shall be conducted **twice/week** with a **grab** sample type.

3. Effluent Temperature, Intake Temperature, Temperature Difference Between Intake and Discharge, Net Rate of Addition of Heat: The effluent limitations and/or monitoring requirements are originally based on the findings of the permittee's 1987 316(a) study and are retained from the existing permit in accordance with N.J.A.C 7:14A-13.19. Additional information regarding temperature and heat limitations is included in the Section 316(a) determination discussed previously in this Fact Sheet.

Temperature shall be monitored on a **twice/month** basis with a **grab** sample type.

4. <u>Chlorine Produced Oxidants (CPO)</u>: In accordance with the Surface Water Quality Standards N.J.A.C. 7:9B-1 <u>et seq</u>. Total Residual Chlorine (TRC) is now referred to as CPO. The daily maximum limitation of 0.2 mg/L is based on 40 CFR 423.13(b)(1) and is retained from the existing permit in accordance with N.J.A.C 7:14A-13.19. Monthly average monitoring and reporting is also required.

Monitoring for CPO shall be conducted on a **twice/month** basis with a **grab** sample type.

5. Whole Effluent Toxicity (WET): Section 101(a) of the Clean Water Act (CWA) establishes a national policy of restoring and maintaining the chemical, physical and biological integrity of the Nation's waters. In addition, section 101(a)(3) of the CWA and the State's Surface Water Quality Standards (SWQS) at N.J.A.C. 7:9B-1.5(a)3 state that the discharge of toxic pollutants in toxic amounts is prohibited. Further, 40 CFR 122.44(d) and N.J.A.C. 7:14A-13.6(a) require that where the Department determines using site-specific WET data that a discharge causes, shows a reasonable potential to cause, or contributes to an excursion above the SWQS, the permitting authority must establish effluent limits for WET.

Acute WET sampling was imposed in the existing permit at a quarterly monitoring frequency. The Department issued a modification on November 26, 1996 that reduced the monitoring frequency to annual. Since January 1995, the permittee has consistently reported an acute result of LC50>100% for this discharge. However, given the volume of this discharge, the Department has retained **annual** sampling. A **composite** sample type shall be used.

The test species method to be used for acute testing shall be the *Mysidopsis bahia* 96 hour definitive test. Such selection is based on the saline characteristics of the receiving stream, the existing permit, N.J.A.C. 7:9B-1.5 and N.J.A.C. 7:18, the Regulations Governing the Certification of Laboratories and Environmental Measurements (N.J.A.C. 7:18).

6. <u>Boron:</u> Monitoring for boron has been included as per EPA Region 2's request. Monitoring for boron is being imposed on an **annual** basis in consideration of the permittee's operations where a **grab** sample shall be used.

<u>DSN 004A</u> - Non-Contact Cooling Water, Stormwater, Floor Drains (0.06 MGD)

1. <u>Flow</u>: This permit does not include a numerical limitation for flow. Monitoring conditions are applied pursuant to N.J.A.C. 7:14A-13.13. Consistent with the existing permit, the permittee is required to monitor and report net flow and heat exchanger flow where net flow shall be used for the purposes of calculating loading values.

Effluent flow monitoring and heat exchanger flow monitoring (internal monitoring) shall be performed **monthly**. Net flow shall be **calculated** on a monthly basis.

2. Total Suspended Solids (TSS), Net: The concentration limitations are based on 40 CFR 423.12(b)(3), are consistent with the existing permit, and are imposed in accordance with N.J.A.C 7:14A-13.19. The loading limitations are based on the long- term average flow of 0.06 MGD. As the source water for this discharge is the receiving stream, the permittee was allowed under the existing permit to meet these limitations on a 'net' basis. This condition has been retained as it is allowable under N.J.A.C. 7:14A-13.4(k). Because net limits are applied, monitoring and reporting for intake and effluent TSS is also required as a monthly average and daily maximum.

Monitoring for TSS shall be conducted on a **monthly** basis with a **grab** sample type.

3. <u>pH</u>: The effluent limitations of 6.0 standard units as a monthly minimum and 9.0 standard units as a monthly maximum are consistent with the existing permit and are imposed in accordance with N.J.A.C 7:14A-13.19. A condition for monitoring intake pH has been included since a narrative condition regarding pH compliance has been included in Part IV A.1.j.

Monitoring for pH shall be conducted **once/week** with a **grab** sample type.

4. <u>Effluent Temperature</u>: The effluent limitation of 37.2 degrees Celsius as a daily maximum is based on the anti-backsliding provisions as cited in N.J.A.C 7:14A-13.19. Monthly average monitoring and reporting is also required.

Monitoring for effluent temperature shall be conducted on a **monthly** basis with a **grab** sample type.

5. <u>Petroleum Hydrocarbons</u>: The effluent limitations are based on N.J.A.C. 7:14A-12.8(c). The loading limitations are based on the long term average flow of 0.06 MGD. As the source water for this discharge is the receiving stream, the permittee was allowed under the previous permit to meet these limitations on a 'net' basis. This condition has been retained as it is allowable under N.J.A.C. 7:14A-13.4(k). Because net limits are applied, monitoring and reporting for intake and effluent petroleum hydrocarbons is also required as a monthly average and daily maximum.

Monitoring for petroleum hydrocarbons shall be conducted on a **monthly** basis with a **grab** sample type.

6. <u>Total Organic Carbon</u>: The daily maximum effluent limitation of 50 mg/L is imposed consistent with the existing permit pursuant to N.J.A.C 7:14A-13.19. Monthly average monitoring and reporting is also required.

Monitoring for total organic carbon shall be conducted on a **monthly** basis with a **grab** sample type.

7. <u>Chlorine Produced Oxidants (CPO)</u>: In accordance with the Surface Water Quality Standards N.J.A.C. 7:9B-1 <u>et seq</u>. Total Residual Chlorine (TRC) is now referred to as CPO. The daily maximum limitation of 0.2 mg/L is based on 40 CFR 423.13(b)(1) and is retained from the existing permit in accordance with N.J.A.C 7:14A-13.19. Monthly average monitoring and reporting is also required.

Monitoring for CPO shall be conducted on a **monthly** basis with a **grab** sample type.

8. Whole Effluent Toxicity (WET): Section 101(a) of the Clean Water Act (CWA) establishes a national policy of restoring and maintaining the chemical, physical and biological integrity of the Nation's waters. In addition, section 101(a)(3) of the CWA and the State's Surface Water Quality Standards (SWQS) at N.J.A.C. 7:9B-1.5(a)3 state that the discharge of toxic pollutants in toxic amounts is prohibited. Further, 40 CFR 122.44(d) and N.J.A.C. 7:14A-13.6(a) require that where the Department determines using site-specific WET data that a discharge causes, shows a reasonable potential to cause, or contributes to an excursion above the SWQS, the permitting authority must establish effluent limits for WET.

Acute WET sampling was imposed in the existing permit at a quarterly monitoring frequency. The Department issued a modification on November 26, 1996 that reduced the monitoring frequency to annual. Since January 1995, the permittee has consistently reported an acute result of LC50>100% for this discharge. However, given the volume of this discharge, the Department has retained **annual** sampling. A **composite** sample type shall be used.

The test species method to be used for acute testing shall be the *Mysidopsis bahia* 96 hour definitive test. Such selection is based on the saline characteristics of the receiving stream, the existing permit, N.J.A.C. 7:9B-1.5 and N.J.A.C. 7:18, the Regulations Governing the Certification of Laboratories and Environmental Measurements (N.J.A.C. 7:18).

9. <u>Boron:</u> Monitoring for boron has been included as per EPA Region 2's request. Monitoring for boron is being imposed on an **annual** basis in consideration of the permittee's operations.

DSN 005A – Dilution Water (732 MGD)

1. <u>Flow</u>: This permit does not include a numerical limitation for flow. Monitoring conditions are applied pursuant to N.J.A.C. 7:14A-13.13. Part IV G.2.d. contains dilution pump operation requirements that are in accordance with the existing permit.

Monitoring is required on a **continuous** basis with a **calculated** sample type.

<u>DSN 007A</u> – Miscellaneous Wastewater (30 MGD)

1. <u>Flow</u>: This permit does not include a numerical limitation for flow. Monitoring conditions are applied pursuant to N.J.A.C. 7:14A-13.13.

Monitoring is required on a **monthly** basis with a **calculated** sample type.

2. <u>pH</u>: The pH of the effluent shall not be less than 6.0 S.U. nor greater than 9.0 S.U.; or, during periods when the pH of the intake water is less than 6.0, the pH of the effluent shall not be less than that of the intake; or, during periods when the pH of the intake water is greater than 9.0, the pH shall not be greater than that of the intake. However, no monitoring or reporting for pH is required at this time at this outfall. This requirement is included as a narrative condition in Part IV.

This condition is included as item A.1.j. of Part IV.

3. <u>Petroleum Hydrocarbons</u>: The monthly average effluent limitation of 10 mg/L and the daily maximum effluent limitation of 15 mg/L are imposed consistent with the existing permit pursuant to N.J.A.C 7:14A-13.19. These limitations are also consistent with N.J.A.C. 7:14A-12.8(c). Monitoring is required with a **grab** sample type.

<u>DSN 008A</u> – Intake Screen Washwater (2.4 MGD)

Fact Sheet Page 34 of 42 NJPDES # : NJ0005550

1. <u>Flow</u>: Monitoring conditions for flow are applied pursuant to N.J.A.C. 7:14A-13.13 and to allow for a measure of intake screen washwater. A flow limit is not imposed at this outfall. No pollutants are added to this discharge as the discharge consists of canal water used for screen washwater.

Monitoring is required on a **monthly** basis with a **calculated** sample type.

DSN 009A – Discharge from Fish Sampling Pool (0 MGD)

1. <u>Flow</u>: Monitoring conditions for flow are applied pursuant to N.J.A.C. 7:14A-13.13 and to ensure that any operations at this discharge point are tracked. A flow limit is not imposed at this outfall. No pollutants are added to this discharge as the discharge consists of canal water used for the purposes of providing water in the fish sampling pool. Monitoring is required on a **monthly** basis with a **calculated** sample type.

C. Recommended Quantitation Levels Policy (RQLs):

The Department developed the RQLs to insure that useful data is provided to the Department in order to characterize the discharger's effluent. The Department recommends that the permittee achieve detection levels that are at least as sensitive as the RQLs found in Part III. The Department has determined that the quantitation levels listed therein can be reliably and consistently achieved by most state certified laboratories for most of the listed pollutants using the appropriate procedures specified in 40 CFR Part 136. FAILURE TO ATTAIN A QUANTITATION LEVEL AS SENSITIVE AS A LISTED RQL IS NOT A VIOLATION OF THE PERMIT, BUT DOES TRIGGER SOME ADDITIONAL REPORTING REQUIREMENTS FOR THE PERMITTEE AS SPECIFIED IN PART IV A.1.c. OF THE PERMIT.

D. Reporting Requirements:

All data requested to be submitted by this permit shall be reported on the Discharge Monitoring Reports (DMRs), Waste Characterization Reports (WCR), and Residual Transfer Reports (RTR) as appropriate and submitted to the Department as required by N.J.A.C. 7:14A-6.8(a).

E. General conditions:

In accordance with N.J.A.C. 7:14A-2.3 and 6.1(b), specific rules from the New Jersey Administrative Code have been incorporated either expressly or by reference in Part I and Part II.

F. Operator Classification Number:

The operator classification requirement is no longer included in the permit. To obtain or determine the appropriate licensed operator classification for the treatment works specified, the permittee shall contact the Bureau of Finance and Construction Permits: Engineering Section South at (609) 633-1169.

G. Residuals/Sludge Conditions:

All treatment works with a discharge regulated under N.J.A.C. 7:14A must have permits that implement applicable technical standards for residuals management. Generally, the permit issued to the treatment works generating the residual will include applicable residual quality monitoring as well as other general conditions required by N.J.A.C. 7:14A-6. In addition, the permit may include conditions related to any aspect of residual management developed on a case-by-case basis where the Department determines that such conditions are necessary to protect public health and the environment.

The permit may also include conditions establishing requirements for treatment works that send residual to other facilities for final use or disposal. Thus, **ALL** residual preparers (that is, generators as well as persons who manage the residual) are required to submit basic information concerning their residual use and disposal practices.

Fact Sheet Page 35 of 42 NJPDES # : NJ0005550

This basic information is submitted by compliance with the Sludge Quality Assurance Regulations (N.J.A.C. 7:14C).

The documents listed below have been used to establish the residual conditions of the Draft Permit:

- a. United States Environmental Protection Agency "Standards for the use or disposal of sewage sludge" (40 CFR Part 503),
- b. "New Jersey Pollutant Discharge Elimination System" (N.J.A.C. 7:14A),
- c. Technical Manual for Residuals Management, May 1998,
- d. USEPA <u>Part 503 Implementation Guidance</u>, EPA 833-R-95-001, October 1995. This document is a compilation of federal requirements, management practices and EPA recommended permit conditions for sewage sludge use and management practices,
- e. USEPA <u>A Plain English Guide to the EPA Part 503 Biosolids Rule</u>, EPA/832/R-93/003, September 1994,
- f. New Jersey "Statewide Sludge Management Plan", November 1987 and
- g. New Jersey "Sludge Quality Assurance Regulations" (SQAR), N.J.A.C. 7:14C.

H. Biocides or Other Cooling Water Additives:

The Permittee is authorized to use the following corrosion inhibitors, biocides, or other cooling water additives: DSN 001A - Sodium hypochlorite; DSN 002A - Chlorine gas; DSN 004A Sodium hypochlorite, Bioguard Tabguard Pucks (trichloro-s-triazinetrione).

Chlorine Produced Oxidants (CPO) shall not be discharged from any single generating unit for more than two hours per day. Samples for CPO shall be taken once during each two hour period of chlorination. Option 1 CPO limits apply to DSN 001A during normal operations. Option 2 CPO limits apply to DSN 001A during periods of chlorination of the turbine building closed CW heat exchanger. These conditions are included in Part IV E.1.f.

If the permittee decides to begin using any additional additives in the future, the permittee must notify the Bureau of Surface Water Permitting at least 180 days prior to use so that the permit may be reopened to incorporate any additional limitations deemed necessary.

I. PCBs:

The discharge of PCBs, such as those which are commonly used for transformer fluid, is prohibited from all outfalls.

12 Description of Procedures for Reaching a Final Decision on the Draft Action:

Please refer to the procedures described in the public notice that is part of the draft permit. The public notice for this action is published in the *Asbury Park Press* and in the DEP Bulletin.

13 Contact Information

If you have any questions regarding this permit action, please contact Susan Rosenwinkel or Heather Genievich of Bureau of Surface Water Permitting at (609) 292-4860.

Permit Summary Tables

Unless otherwise noted all effluent limitations are expressed as maximums. Dashes (--) indicate there is no effluent data, no limitations, or no monitoring for this parameter depending on the column in which it appears.

DSN 001A - Non-Contact Cooling Water from Main Condenser

PARAMETER (1)	UNITS	AVERAGING PERIOD	WASTEWATER DATA	EXISTING LIMITS	FINAL LIMITS	MONITO	RING
		LKIOD	1/09 – 11/10	LIMITS	LIMITS	Frequency	Sample Type
Effluent Flow	MGD	Monthly Avg. Daily Max.	609 662.4	MR MR	MR MR	Continuous	Calculated
Intake Flow	MGD	Monthly Avg. Daily Max.			MR MR	Continuous	Calculated
Intake Velocity	Ft/sec	Monthly Avg. Daily Max.	0.73 1.6	MR 2.2	MR 2.2	1/Month	Calculated
Temperature Difference Between Intake and Discharge (Option 1) (2)	°C (°F)	Monthly Avg. Instant Max. Instant Max.	9.71 13.9 	MR 12.8 (23)	MR 12.8 (23)	1/Day	Calculated
Temperature Difference Between Intake and Discharge (Option 2) (2)	°C	Monthly Avg. Instant Max. # data Instant Max.	11.0 16.1 13	MR 18.3	MR 18.3	1/Day	Calculated
Effluent Temperature (Option 1) (2)	°F) °C (°F)	Monthly Avg. Instant Max. Instant Max.	24.5 41.1	(33) MR 41.1 (106)	(33) MR 41.1 (106)	Continuous	Grab
Effluent Temperature (Option 2) (2)	°C (°F)	Monthly Avg. Instant Max. # data Instant Max.	23.8 41.1 13	MR 43.3 (110)	MR 43.3 (110)	Continuous	Grab
Intake Temperature	°C	Monthly Avg. Instant Max.	20.9 31.7	MR MR	MR MR	Continuous	Grab
Net Rate of Heat (Option 1) (2)	MBTU/hr	Monthly Avg. Daily Max.	3630 4484	MR 5420	MR 5420	1/Day	Calculated
Net Rate of Heat (Option 2) (2)	MBTU/hr	Monthly Avg. Daily Max. # data	3856 4459 13	MR 5700	MR 5700	1/Day	Calculated
Effluent pH	Su	Instant Min. Instant Max.	7.3 8.2	6.5 (4) 8.5 (4)	6.5 (4) 8.5 (4)	2/Week	Grab
Intake pH	Su	Instant Min. Instant Max.	7.0 8.2	MR MR	MR MR	2/Week	Grab
Chlorine Produced Oxidants – Normal Operations (Option 1) (3)	mg/L	Monthly Avg. Daily Max. # Det. / # N.D.	0.1 0.1 1/21	MR 0.2	MR 0.2	1/Day	Grab
Chlorine Produced Oxidants – Normal Operations (Option 1) (3)	kg/d	Monthly Avg. Daily Max.	0.72 16.71	MR 41.7	MR 41.7	1/Day	Grab
Chlorine Produced Oxidants – During operation of the turbine building closed cooling water heat exchanger (Option 2) (3)	mg/L	Monthly Avg. Daily Max. # Det. / # N.D.	0.1 0.1 5/18	MR 0.2	MR 0.2	1/Day	Grab
Chlorine Produced Oxidants – During operation of the turbine building closed cooling water heat exchanger (Option 2) (3)	kg/d	Monthly Avg. Daily Max.	10.44 25.07	MR 0.2	MR 0.2	1/Day	Grab
Mercury, Total Recoverable	ug/L	Monthly Avg. Daily Max.			MR MR	1/6 Months	Grab
Boron	ug/L	Monthly Avg. Daily Max.			MR MR	1/Year	Grab
Acute Toxicity, LC50	%	Minimum # data	>100	MR	MR	1/Year	Composite

Fact Sheet Page 37 of 42 NJPDES # : NJ0005550

Footnotes and Abbreviations for DSN 001A:

MR Monitor and report only

- (1) Monitoring for all parameters is not required when there is no flow and/or heat load across the Station's main condenser (i.e. plant is not generating power).
- (2) Consistent with the existing permit, the Department has continued effluent limitations for effluent temperature, temperature difference between intake and discharge, and net rate of addition of heat under two scenarios that are identified in this permit as Option 1 and Option 2 limits. An explanation of these conditions is also reiterated as items G.2.g., G.2.j and G.2.i.. of Part IV. Option 1 heat and temperature limits are applicable when four circulating water pumps are operating for condenser cooling. Option 2 heat and temperature limits shall be applicable during periods of condenser backwash, intake component maintenance or during an Emergency Condition. An Emergency Condition is declared by the PJM Interconnection Office of Information Dispatcher and includes Capacity, Weather/Environmental, Sabotage/Terrorism, and Transmission Security Emergencies as such terms are defined in the PJM Interconnection Emergency Operations Manual M-13, Emergency Operations, Revision 41, effective October 1, 2010. The number of days per year when such Emergency Conditions can apply shall not exceed 20.
- (3) Consistent with the existing permit, the Department has continued effluent limitations for CPO under two scenarios that are identified in this permit as Option 1 and Option 2 limits as identified in G.2.i. of Part IV. Option 1 CPO limits are applicable to DSN 001A. Option 2 CPO limits are applicable during periods of chlorination of the turbine building closed CW heat exchanger.
- (4) During periods when the pH of the intake water is less than 6.5, the pH of the effluent shall not be less than that of the intake; or, during periods when the pH of the intake water is greater than 8.5, the pH of the effluent shall not be greater than that of the intake.

DSN 002A - Non-Contact Cooling Water from Rad. System

PARAMETER	UNITS	AVERAGING PERIOD	WASTEWATER DATA	EXISTING LIMITS	FINAL LIMITS	MONITO	ORING
			1/09 – 11/10			Frequency	Sample Type
Flow	MGD	Monthly Avg. Daily Max.	3.60 3.60	MR MR	MR MR	2/Month	Calculated
Temperature Difference Between Intake and Discharge	°C	Monthly Avg. Instant Max.	1.9 8.3	MR 18.3	MR 18.3	2/Month	Calculated
Effluent Temperature	°C	Monthly Avg. Instant Max.	18.0 30.7	MR 45	MR 45	2/Month	Grab
Intake Temperature	°C	Monthly Avg. Instant Max.	 29.1	MR MR	MR MR	2/Month	Grab
Effluent pH	Su	Instant Min. Instant Max.	7.0 7.8	6.5 (1) 8.5 (1)	6.5 (1) 8.5 (1)	2/Week	Grab
Intake pH	Su	Instant Min. Instant Max.	6.7 7.9	MR MR	MR MR	2/Week	Grab
Chlorine Produced Oxidants	mg/L	Monthly Avg. Daily Max. # Det. / # N.D.	0.1 0.1 3/20	MR 0.2	MR 0.2	2/Month	Grab
Net Rate of Addition of Heat	MBTU/Hour	Monthly Avg. Daily Max.	4.21 12	MR 790	MR 790	2/Month	Calculated
Boron	ug/L	Monthly Avg. Daily Max.			MR MR	1/Year	Grab
Acute Toxicity, LC50	%	Minimum # data	>100	MR	MR	1/Year	Composite

Footnotes and Abbreviations for DSN 002A:

MR Monitor and report only

(1) During periods when the pH of the intake water is less than 6.5, the pH of the effluent shall not be less than that of the intake; or, during periods when the pH of the intake water is greater than 8.5, the pH of the effluent shall not be greater than that of the intake.

DSN 004A – Combined Wastewater

PARAMETER	UNITS	AVERAGING PERIOD	WASTEWATER DATA	EXISTING LIMITS	FINAL LIMITS	MONITO	ORING
		TEMOD	1/09 – 11/10	Envirio	Livilia	Frequency	Sample Type
Net Flow (1)	MGD	Monthly Avg. Daily Max.	0.06 0.06	MR MR	MR MR	1/Month	Calculated
Effluent Flow	MGD	Monthly Avg. Daily Max.	8.66 8.66	MR MR	MR MR	1/Month	Calculated
Heat Exchanger Flow	MGD	Monthly Avg. Daily Max.	8.6 8.6	MR MR	MR MR	1/Month	Calculated
Effluent Temperature	°C	Monthly Avg. Instant Max.	21.44 31.4	MR 37.2	MR 37.2	1/Month	Grab
Effluent pH	S.U.	Instant Min. Instant Max.	6.9 8.1	6.0 (2) 9.0 (2)	6.0 (2) 9.0 (2)	1/Week	Grab
Intake pH	S.U.	Instant Min. Instant Max.	6.7 8.3	MR MR	MR MR	1/Week	Grab
Chlorine Produced Oxidants	Mg/L	Monthly Avg. Daily Max. # Det. / # N.D.	0.1 0.2 7/17	MR 0.2	MR 0.2	1/Month	Grab
Total Organic Carbon	Mg/L	Monthly Avg. Daily Max.	6.8 11.6	MR 50	MR 50	1/Month	Grab
Net Petroleum Hydrocarbons	Mg/L	Monthly Avg. Daily Max.	0.71 10	10 15	10 15	1/Month	Grab
Net Petroleum Hydrocarbons	Kg/day	Monthly Avg. Daily Max.	0.23 2.27	MR 4.54	MR 4.54	1/Month	Grab
Effluent Petroleum Hydrocarbons	Mg/L	Monthly Avg. Daily Max # Det. / # N.D.	4.55 12.5 6/18	MR MR	MR MR	1/Month	Grab
Intake Petroleum Hydrocarbons	Mg/L	Monthly Avg. Daily Max. # Det. / # N.D.	2.12 7.8 5/19	MR MR	MR MR	1/Month	Grab
Net Total Suspended Solids	Mg/L	Monthly Avg. Daily Max.	0.20 9.4	30 100	30 100	1/Month	Grab
Net Total Suspended Solids	Kg/day	Monthly Avg. Daily Max.	0.05 2.14	MR 22.7	MR 22.7	1/Month	Grab
Effluent Total Suspended Solids	Mg/L	Monthly Avg. Daily Max.	14.42 34.2	MR MR	MR MR	1/Month	Grab
Intake Total Suspended Solids	Mg/L	Monthly Avg. Daily Max.	14.23 32	MR MR	MR MR	1/Month	Grab
Boron	ug/L	Monthly Avg. Daily Max.			MR MR	1/Year	Grab
Acute Toxicity, LC50	%	Minimum	>100	MR	MR	1/Year	Composite

Footnotes and Abbreviations for DSN 004A:

- MR Monitor and report only
- (1) Net flow shall be used for calculating loading values only for this outfall. The equation Qnet = Qeffluent Qheat exchanger.
- Ouring periods when the pH of the intake water is less than 6.0, the pH of the effluent shall not be less than that of the intake; or, during periods when the pH of the intake water is greater than 9.0, the pH of the effluent shall not be greater than that of the intake.

Fact Sheet Page 39 of 42 NJPDES #: NJ0005550

DSN 005A - Dilution Pump Water

PARAMETER (1)	UNITS	AVERAGING PERIOD	WASTEWATER DATA	EXISTING LIMITS	FINAL LIMITS	MONITO	RING
			1/09 – 11/10			Frequency	Sample Type
Flow	MGD	Monthly Avg. Daily Max.	721 748.8	MR MR	MR MR	Continuous	Calculated

DSN 007A – Dilution Pump Seal Water

PARAMETER (1)	UNITS	AVERAGING PERIOD	WASTEWATER DATA	EXISTING LIMITS	FINAL LIMITS	MONITO	RING
			1/09 – 11/10			Frequency	Sample Type
Flow	MGD	Monthly Avg. Daily Max. # detected # No Discharge	22 757 2 21	MR MR	MR MR	Continuous	Calculated
Petroleum Hydrocarbons	Mg/L	Monthly Avg. Daily Max.	No Discharge No Discharge	10 15	10 15	1/Month	Grab

DSN 008A - Screen Water Discharge

PARAMETER (1)	UNITS	AVERAGING PERIOD	WASTEWATER DATA	EXISTING LIMITS	FINAL LIMITS	MONITO	RING
			1/09 – 11/10			Frequency	Sample Type
Flow	MGD	Monthly Avg. Daily Max.	2.4 4.4	MR MR	MR MR	1/Month	Calculated

<u>DSN 009A – Fish Sampling Pool Discharge</u>

PARAMETER (1)	UNITS	AVERAGING PERIOD	WASTEWATER DATA	EXISTING LIMITS	FINAL LIMITS	MONITO	RING
			1/09 – 11/10			Frequency	Sample Type
Flow	MGD	Monthly Avg. Daily Max.	No Discharge No Discharge	MR MR	MR MR	1/Month	Calculated

Footnotes and Abbreviations for DSNs 005A, 007A, 008A and 009A:

MR Monitor and report only

Contents of the Administrative Record

The following items are used to establish the basis of the Draft Permit:

Rules and Regulations:

- 1. 33 U.S.C. 1251 et seq., Federal Water Pollution Control Act. [C]
- 2. 40 CFR Part 131, Federal Water Quality Standards. [A] [C]
- 3. 40 CFR Part 122, National Pollutant Discharge Elimination System. [C]
- 4. N.J.S.A. 58:10A-1 et seq., New Jersey Water Pollution Control Act. [A] [B]
- 5. N.J.A.C. 7:14A-1 et seq., New Jersey Pollutant Discharge Elimination System Regulations. [A] [B]
- 6. N.J.A.C. 7:9B-1 et seq., New Jersey Surface Water Quality Standards. [A] [B]
- 7. N.J.A.C. 7:15, Statewide Water Quality Management Planning Rules. [A] [B]
- 8. N.J.A.C. 7:14C, Sludge Quality Assurance Regulations. [B]
- 9. 40 CFR Part 125, Criteria and Standards for the National Pollutant Discharge Elimination System, Subpart H, Criteria for Determining Effluent Limitations Under Section 316(a) of the Act.
- 10. 40 CFR Part 423, Steam Electric Power Generating Point Source Category.
- 11. 40 CFR Part 401.2

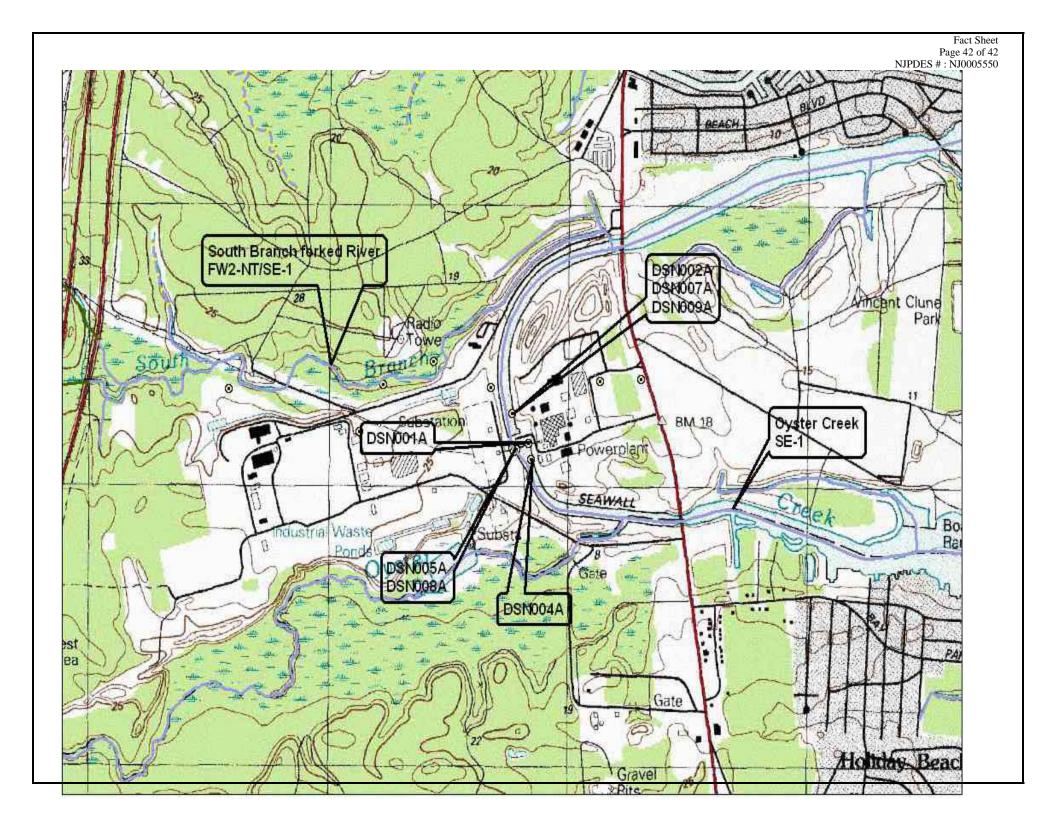
Guidance Documents / Reports:

- 1. "Field Sampling Procedures Manual", published by the NJDEP. [A]
- 2. "Discharge Monitoring Report (DMR) Instructional Manual", updated December 2007 and available on the web at http://www.state.nj.us/dep/dwq/pdf/MRF Manual.pdf.
- 3. "EPA Technical Support Document for Water Quality-based Toxics Control", EPA/505/2-90-001, March 1991. [A]
- 4. New Jersey's 2008 Integrated Water Quality Monitoring and Assessment Report (include 305(b) Report and 303(d) List). [A] [B]

Permits / Applications:

- 1. Draft NJPDES/DSW Permit NJ0005550, issued January 7, 2010.
- 2. Minor Modification to NJPDES/DSW Permit NJ0005550, issued January 14, 2009 and effective January 5, 2009. [A]
- 3. Draft NJPDES/DSW Permit NJ0005550, issued July 19, 2005. [A]
- 4. NJPDES/DSW Permit Application dated June 3, 1999. [A]
- 5. Existing NJPDES/DSW Permit NJ0005550, issued October 21, 1994 and effective December 1, 1994. [A]
- 6. Major Modification to NJPDES/DSW Permit NJ0005550, issued April 17, 1996 and effective on June 1, 1996.[A]
- 7. Major Modification to NJPDES/DSW Permit NJ0005550, issued November 27, 1996 and effective on December 1, 1996.[A]

Correspondence / Reports / Other:


- 1. Correspondence dated January 7, 2011 addressed to the US Nuclear Regulatory Commission from Keith R. Jury, Vice President, Licensing & Regulatory Affairs, Exelon Generation Company, LLC to certify Exelon's intent to permanently cease operations at Oyster Creek Nuclear Generating Station.
- Administrative Consent Order dated December 9, 2010 between Exelon and NJDEP.
- 3. Public comments and testimony submitted on the January 7, 2010 draft NJPDES permit.
- 4. Report dated October 29, 2008 to characterize the aquatic resources and impingement and entrainment at Oyster Creek Nuclear Generating Station.
- 5. Monitoring Report form data January 2009 through November 2010.
- 6. Correspondence dated December 28, 2007 addressed to Timothy Rausch, AmeGen Energy Company from Assistant Commissioner Mark Mauriello, NJDEP finding consistency with the federal Coastal Zone Management Act for federal relicensing.
- 7. Correspondence dated November 30, 2007 addressed to Commissioner Lisa Jackson from Joseph Dominguez of Exelon Generation Company committing to environmental projects related to the Federal Consistency Request for License Renewal of OCNGS.

Fact Sheet Page 41 of 42 NJPDES # : NJ0005550

- 8. Oyster Creek Generating Station Fishery Data Report dated November 20, 2007.
- 9. Second Circuit Court decision regarding Section 316(b) Phase II regulations. <u>Riverkeeper, Inc., v. EPA, No. 04-6692</u>, (2d Cir. January 25, 2007).
- 10. Determination of Cooling Tower Availability prepared by URS dated March 4, 2006.
- 11. Barnegat Bay National Estuary Program, 2005 State of the Bay Technical Report.
- 12. Correspondence dated November 7, 2005 formally responding to the Department's comments on the PIC.
- 13. Correspondence dated September 21, 2005 agreeing to the inclusion of four additional target species for impingement sampling.
- 14. Correspondence dated September 9, 2005 granting conditional approval of the PIC addressed to Malcolm Browne of AmerGen from Howard Tompkins of the Department's Bureau of Point Source Permitting Region 1.
- 15. Proposal for Information Collection dated June 29, 2005
- 16. Correspondence dated March 31, 2005 to AmerGen from the Division of Land Use Regulation advising the permittee that the State Agency's review had begun for the Federal Consistency Determination.
- 17. The Journal of Coastal Research, Special Issue No. 32, 2001.
- 18. Plan of Study for Analysis of Alternatives for Dilution Pump Operation at the Oyster Creek Nuclear Generating Station, May 1995 (EA Engineering, Science, and Technology).
- 19. Technical Review and Evaluation of Thermal Effects Studies and Cooling Water Intake Structure Demonstration of Impact for the Oyster Creek Nuclear Generating Station, Revised Final Report, Versar, Inc., May 1989.
- 20. Technical Review and Evaluation of Thermal Effects Studies and Cooling Water Intake Structure Demonstration of Impact for the Oyster Creek Nuclear Generating Station, Advanced Final Report, Versar, Inc., 1988 and comments received thereon.
- 21. EA 1986 (EA Engineering, Science and Technology, Inc. 1986) Entrainment and impingement studies at Oyster Creek Nuclear Generating Station, 1984-1985. Prepared for GPU Nuclear Corporation.
- 22. Jersey Central Power & Light Company Section 316 Demonstration for Oyster Creek and Forked River Nuclear Generating Stations, May 1978.
- 23. 1966 Stipulation of the State of NJ, Department of Public Utilities, Board of Public Utility Commissioners.

Footnotes:

- [A] Denotes items that may be found in the NJPDES/DSW Administrative Record Library located in the NJDEP Central File Room, 401 East State Street, Trenton, New Jersey.
- [B] Denotes items that may be found on the New Jersey Department of Environmental Protection (NJDEP) website located at "http://www.state.nj.us/dep/".
- [C] Denotes items that may be found on the United States Environmental Protection Agency (USEPA) website at "http://www.epa.gov/".

NEW JERSEY POLLUTANT DISCHARGE ELIMINATION SYSTEM

The New Jersey Department of Environmental Protection hereby grants you a NJPDES permit for the facility/activity named in this document. This permit is the regulatory mechanism used by the Department to help ensure your discharge will not harm the environment. By complying with the terms and conditions specified, you are assuming an important role in protecting New Jersey's valuable water resources. Your acceptance of this permit is an agreement to conform with all of its provisions when constructing, installing, modifying, or operating any facility for the collection, treatment, or discharge of pollutants to waters of the state. If you have any questions about this document, please feel free to contact the Department representative listed in the permit cover letter. Your cooperation in helping us protect and safeguard our state's environment is appreciated.

Permit Number: NJ0005550

Draft: Surface Water Renewal Permit Action

Permittee:

Exelon Generation Co. PO Box 388 - Oyster Creek Generating Station Forked River, NJ 08731-0388

Property Owner:

Exelon Generation Co. LLC PO Box 388 - Oyster Creek Generating Station Forked River, NJ 08731-0388

Location Of Activity:

Oyster Creek Generating Station Route 9 South Lacey Township, NJ 08731-0388

Authorization(s) Covered Under This Approval	Issuance Date	Effective Date	Expiration Date
B -Industrial Wastewater	Pending	Pending	Pending

By Authority of: Commissioner's Office

DEP AUTHORIZATION
Pilar Patterson, Chief
Bureau of Surface Water Permitting
Division of Water Quality

(Terms, conditions and provisions attached hereto)

Division of Water Quality

PART I GENERAL REQUIREMENTS: NJPDES

A. General Requirements of all NJPDES Permits

1. Requirements Incorporated by Reference

a. The permittee shall comply with all conditions set forth in this permit and with all the applicable requirements incorporated into this permit by reference. The permittee is required to comply with the regulations, including those cited in paragraphs b. through e. following, which are in effect as of the effective date of the final permit.

b. General Conditions

Penalties for Violations	N.J.A.C. 7:14-8.1 et seq.
Incorporation by Reference	N.J.A.C. 7:14A-2.3
Toxic Pollutants	N.J.A.C. 7:14A-6.2(a)4i
Duty to Comply	N.J.A.C. 7:14A-6.2(a)1 & 4
Duty to Mitigate	N.J.A.C. 7:14A-6.2(a)5 & 11
Inspection and Entry	N.J.A.C. 7:14A-2.11(e)
Enforcement Action	N.J.A.C. 7:14A-2.9
Duty to Reapply	N.J.A.C. 7:14A-4.2(e)3
Signatory Requirements for Applications and Reports	N.J.A.C. 7:14A-4.9
Effect of Permit/Other Laws	N.J.A.C. 7:14A-6.2(a)6 & 7 & 2.9(c)
Severability	N.J.A.C. 7:14A-2.2
Administrative Continuation of Permits	N.J.A.C. 7:14A-2.8
Permit Actions	N.J.A.C. 7:14A-2.7(c)
Reopener Clause	N.J.A.C. 7:14A-6.2(a)10
Permit Duration and Renewal	N.J.A.C. 7:14A-2.7(a) & (b)
Consolidation of Permit Process	N.J.A.C. 7:14A-15.5
Confidentiality	N.J.A.C. 7:14A-18.2 & 2.11(g)
Fee Schedule	N.J.A.C. 7:14A-3.1
Treatment Works Approval	N.J.A.C. 7:14A-22 & 23
Operation And Maintenance	

c. Operation And Maintenance

Need to Halt or Reduce not a Defense	N.J.A.C. 7:14A-2.9(b)
Proper Operation and Maintenance	N.J.A.C. 7:14A-6.12

d. Monitoring And Records

Monitoring	N.J.A.C. 7:14A-6.5
Recordkeeping	N.J.A.C. 7:14A-6.6
Signatory Requirements for Monitoring Reports	N.J.A.C. 7:14A-6.9

e. Reporting Requirements

Planned Changes	N.J.A.C. 7:14A-6.7
Reporting of Monitoring Results	N.J.A.C. 7:14A-6.8
Noncompliance Reporting	N.J.A.C. 7:14A-6.10 & 6.8(h)
Hotline/Two Hour & Twenty-four Hour Reporting	N.J.A.C. 7:14A-6.10(c) & (d)
Written Reporting	N.J.A.C. 7:14A-6.10(e) &(f) & 6.8(h)
Duty to Provide Information	N.J.A.C. 7:14A-2.11, 6.2(a)14 & 18.1
Schedules of Compliance	N.J.A.C. 7:14A-6.4

Transfer N.J.A.C. 7:14A-6.2(a)8 & 16.2

GENERAL REQUIREMENTS Page 1 of 1

PART II

GENERAL REQUIREMENTS: DISCHARGE CATEGORIES

A. Additional Requirements Incorporated By Reference

1. Requirements for Discharges to Surface Waters

- a. In addition to conditions in Part I of this permit, the conditions in this section are applicable to activities at the permitted location and are incorporated by reference. The permittee is required to comply with the regulations which are in effect as of the effective date of the final permit.
 - i. Surface Water Quality Standards N.J.A.C. 7:9B-1
 - ii. Water Quality Management Planning Regulations N.J.A.C. 7:15

B. General Conditions

1. Scope

a. The issuance of this permit shall not be considered as a waiver of any applicable federal, state, and local rules, regulations and ordinances.

2. Permit Renewal Requirement

- a. Permit conditions remain in effect and enforceable until and unless the permit is modified, renewed or revoked by the Department.
- b. Submit a complete permit renewal application: 180 days before the Expiration Date.

3. Notification of Non-Compliance

- a. The permittee shall notify the Department of all non-compliance when required in accordance with N.J.A.C. 7:14A-6.10 by contacting the DEP HOTLINE at 1-877-WARNDEP (1-877-927-6337).
- b. The permittee shall submit a written report as required by N.J.A.C. 7:14A-6.10 within five days.

4. Notification of Changes

- a. The permittee shall give written notification to the Department of any planned physical or operational alterations or additions to the permitted facility when the alteration is expected to result in a significant change in the permittee's discharge and/or residuals use or disposal practices including the cessation of discharge in accordance with N.J.A.C. 7:14A-6.7.
- b. Prior to any change in ownership, the current permittee shall comply with the requirements of N.J.A.C. 7:14A-16.2, pertaining to the notification of change in ownership.

5. Access to Information

a. The permittee shall allow an authorized representative of the Department, upon the presentation of credentials, to enter upon a person's premises, for purposes of inspection, and to access / copy any records that must be kept under the conditions of this permit.

6. Operator Certification

- a. Pursuant to N.J.A.C. 7:10A-1.1 et seq. every wastewater system not exempt pursuant to N.J.A.C. 7:10A-1.1(b) requires a licensed operator. The operator of a system shall meet the Department's requirements pursuant to N.J.A.C. 7:10A-1.1 and any amendments. The name of the proposed operator, where required shall be submitted to the Department at the address below, in order that his/her qualifications may be determined prior to initiating operation of the treatment works.
 - Notifications shall be submitted to: NJDEP Examination and Licensing Unit P.O. Box 417 Trenton, New Jersey 08625 (609)777-1012
- b. The permittee shall notify the Department of any changes in licensed operator within two weeks of the change.

7. Operation Restrictions

a. The operation of a waste treatment or disposal facility shall at no time create: (a) a discharge, except as authorized by the Department in the manner and location specified in Part III of this permit; (b) any discharge to the waters of the state or any standing or ponded condition for water or waste, except as specifically authorized by a valid NJPDES permit.

8. Residuals Management

- a. The permittee shall comply with land-based sludge management criteria and shall conform with the requirements for the management of residuals and grit and screenings under N.J.A.C. 7:14A-6.15(a), which includes:
 - i. Standards for the Use or Disposal of Residual, N.J.A.C. 7:14A-20;
 - ii. Section 405 of the Federal Act governing the disposal of sludge from treatment works treating domestic sewage;
 - iii. The Solid Waste Management Act, N.J.S.A. 13:1E-1 et seq., and the Solid Waste Management Rules, N.J.A.C. 7:26;
 - iv. The Sludge Quality Assurance Regulations, N.J.A.C. 7:14C;
 - v. The Statewide Sludge Management Plan promulgated pursuant to the Water Quality Planning Act, N.J.S.A. 58:11A-1 et seq., and the Solid Waste Management Act, N.J.S.A. 13:1E-1 et seq.; and
 - vi. The provisions concerning disposal of sewage sludge and septage in sanitary landfills set forth at N.J.S.A. 13:1E-42 and the Statewide Sludge Management Plan.
 - vii. Residual that is disposed in a municipal solid waste landfill unit shall meet the requirements in 40 CFR Part 258 and/or N.J.A.C. 7:26 concerning the quality of residual disposed in a municipal solid waste landfill unit. (That is, passes the Toxicity Characteristic Leaching Procedure and does not contain "free liquids" as defined at N.J.A.C. 7:14A-1.2.)

- b. If any applicable standard for residual use or disposal is promulgated under section 405(d)of the Federal Act and Sections 4 and 6 of the State Act and that standard is more stringent than any limitation on the pollutant or practice in the permit, the Department may modify or revoke and reissue the permit to conform to the standard for residual use or disposal.
- c. The permittee shall make provisions for storage, or some other approved alternative management strategy, for anticipated downtimes at a primary residual management alternative. The permittee shall not be permitted to store residual beyond the capacity of the structural treatment and storage components of the treatment works. N.J.A.C. 7:14A-20.8(a) and N.J.A.C. 7:26 provide for the temporary storage of residuals for periods not exceeding six months, provided such storage does not cause pollutants to enter surface or ground waters of the State. The storage of residual for more than six months is not authorized under this permit. However, this prohibition does not apply to residual that remains on the land for longer than six months when the person who prepares the residual demonstrates that the land on which the residual remains is not a surface disposal site or landfill. The demonstration shall explain why residual must remain on the land for longer than six months prior to final use or disposal, discuss the approximate time period during which the residual shall be used or disposed and provide documentation of ultimate residual management arrangements. Said demonstration shall be in writing, be kept on file by the person who prepares residual, and submitted to the Department upon request.
- d. The permittee shall comply with the appropriate adopted District Solid Waste or Sludge Management Plan (which by definition in N.J.A.C. 7:14A-1.2 includes Generator Sludge Management Plans), unless otherwise specifically exempted by the Department.
- e. The preparer must notify and provide information necessary to comply with the N.J.A.C. 7:14A-20 land application requirements to the person who applies bulk residual to the land. This shall include, but not be limited to, the applicable recordkeeping requirements and certification statements of 40 CFR 503.17 as referenced at N.J.A.C 7:14A-20.7(j).
- f. The preparer who provides biosolids to another person who further prepares the biosolids for application to the land must provide this person with notification and information necessary to comply with the N.J.A.C. 7:14A-20 land application requirements.
- g. Any person who prepares bulk residual in New Jersey that is applied to land in a State other than New Jersey shall comply with the requirement at N.J.A.C. 7:14A-20.7(b)1.ix and/or 20.7(b)1.x, as applicable, to provide written notice to the Department and to the permitting authority for the State in which the bulk residual is proposed to be applied.

PART III LIMITS AND MONITORING REQUIREMENTS

MONITORED LOCATION: 001A NCCW Main Condenser

RECEIVING STREAM: Oyster Creek Discharge

Canal

STREAM CLASSIFICATION:

DISCHARGE CATEGORY(IES):

SE1(C2)

B - Industrial Wastewater

Location Description

Sampling for all parameters shall be taken at the discharge into the discharge canal or at the discharge tunnel east of the chlorine monitoring shed. Discharge occurs at lat. 39d 48' 40.2" and long. 74d 12' 00.0". Please refer to items A1j and G2h of Part IV for additional information on pH and CPO limits. Please refer to items G2g, G2h and G2i for additional info. on heat and temperature limits.

Contributing Waste Types

Non-contact Cooling Water

Surface Water DMR Reporting Requirements:

Submit a Monthly DMR: within twenty-five days after the end of every month beginning from the effective date of the permit (EDP).

Comments:

Monitoring for all parameters is not required when there is no flow and/or heat load across the Station's main condenser (i.e. plant is not generating power). Effluent temperature monitoring shall be conducted via 15 minute averages per calculation. EPA method 1631E shall be used for mercury monitoring.

Table III - A - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final PHASE Start Date: PHASE End Date:

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Flow, In Conduit or	Intake	REPORT	REPORT	MGD					Continuous	Calculated
Thru Treatment Plant		Monthly Average	Daily Maximum		****	****	****	****		
January thru December	QL	***	***		***	***	***			
Flow, In Conduit or Thru Treatment Plant	Effluent Gross Value	REPORT Monthly Average	REPORT Daily Maximum	MGD	****	****	****	****	Continuous	Calculated
January thru December	QL	***	***		***	***	***			
рН	Effluent Gross Value	****	****	****	6.5 Monthly Minimum	****	8.5 Monthly Maximum	SU	2/Week	Grab
January thru December	QL	***	***		***	***	***			
pН	Intake From Stream	****	****	****	REPORT Monthly Minimum	****	REPORT Monthly Maximum	SU	2/Week	Grab
January thru December	QL	***	***		***	***	***			

Limits And Monitoring Requirements

Page 1 of 12

Surface Water DMR Reporting Requirements:

Submit a Monthly DMR: within twenty-five days after the end of every month beginning from the effective date of the permit (EDP).

Comments:

Monitoring for all parameters is not required when there is no flow and/or heat load across the Station's main condenser (i.e. plant is not generating power). Effluent temperature monitoring shall be conducted via 15 minute averages per calculation. EPA method 1631E shall be used for mercury monitoring.

Table III - A - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final PHASE Start Date: PHASE End Date:

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
LC50 Statre 96hr Acu	Effluent				REPORT			PERCENT	1/Year	Composite
Mysid Bahia	Gross Value	****	****	****	Report Per	****	****			
					Minimum					
January thru December	QL	***	***		***	***	***			
Chlorine Produced	Effluent	REPORT	41.7	KG/DAY		REPORT	0.2	MG/L	1/Day	Grab
Oxidants	Gross Value	Monthly	Daily		****	Monthly	Daily			
Option 1		Average	Maximum			Average	Maximum			
January thru December	RQL	***	***		***	***	0.1			
Chlorine Produced	Effluent					REPORT	0.2	MG/L	1/Day	Grab
Oxidants	Gross Value	****	****	****	****	Monthly	Daily		•	
Option 2						Average	Maximum			
January thru December	RQL	***	***		***	***	0.1			
Temperature,	Effluent					REPORT	106		Continuous	Grab
oF	Gross Value	****	****	****	****	Monthly	Daily	****		
Option 1						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Temperature,	Effluent					REPORT	110		Continuous	Grab
oF	Gross Value	****	****	****	****	Monthly	Daily	****		
Option 2						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Temperature,	Intake From					REPORT	REPORT		Continuous	Grab
oF	Stream	****	****	****	****	Monthly	Daily	****		
						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Boron, Total	Effluent					REPORT	REPORT	UG/L	1/Year	Grab
(as B)	Gross Value	****	****	****	****					
January thru December	QL	***	***		***	***	***			

Limits And Monitoring Requirements
Page 2 of 12

Surface Water DMR Reporting Requirements:

Submit a Monthly DMR: within twenty-five days after the end of every month beginning from the effective date of the permit (EDP).

Comments:

Monitoring for all parameters is not required when there is no flow and/or heat load across the Station's main condenser (i.e. plant is not generating power). Effluent temperature monitoring shall be conducted via 15 minute averages per calculation. EPA method 1631E shall be used for mercury monitoring.

Table III - A - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final PHASE Start Date: PHASE End Date:

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Net Rate of Addition	Effluent					REPORT	5420	MBTU/HR	1/Day	Calculated
of Heat	Gross Value	****	****	****	****	Monthly	Daily			
Option 1						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Net Rate of Addition	Effluent					REPORT	5700	MBTU/HR	1/Day	Calculated
of Heat	Gross Value	****	****	****	****	Monthly	Daily			
Option 2						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Temp. Diff. between	Effluent Net					REPORT	23	DEG.F	1/Day	Calculated
Intake and Discharge	Value	****	****	****	****	Monthly	Daily			
Option 1						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Temp. Diff. between	Effluent Net					REPORT	33	DEG.F	1/Day	Calculated
Intake and Discharge	Value	****	****	****	****	Monthly	Daily			
Option 2						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Velocity of Intake	Effluent					REPORT	2.2	FPS	1/Month	Measured
	Gross Value	****	****	****	****					
January thru December	QL	***	***	-	***	***	***			
Mercury, Total	Effluent					REPORT	REPORT	UG/L	1/6 Months	Grab
(as Hg)	Gross Value	****	****	****	****					
January thru December	QL	***	***	1	***	***	***			

Limits And Monitoring Requirements Page 3 of 12

MONITORED LOCATION: 002A NCCW from Rad. System

RECEIVING STREAM: Forked River Intake Canal **STREAM CLASSIFICATION:**

DISCHARGE CATEGORY(IES):

SE1(C2) B - Industrial Wastewater

Location Description

Sampling shall take place at the discharge to the intake canal or alternatively at the Radwaste Heat Exchanger Room. Discharge is to the intake canal at Latitude 39d 48' 52.9" and Longitude 74d 12' 28.2". Please refer to item A.1.j. of Part IV for additional information on pH. Please refer to item G.2.h. for additional information on temperature limits.

Contributing Waste Types

Non-contact Cooling Water

Surface Water DMR Reporting Requirements:

Submit a Monthly DMR: Within twenty-five days after the end of every month beginning from the effective date of the permit (EDP)..

Table III - B - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final PHASE Start Date: PHASE End Date:

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Flow, In Conduit or	Effluent	REPORT	REPORT	MGD					2/Month	Calculated
Thru Treatment Plant	Gross Value	Monthly	Daily		****	****	****	****		
		Average	Maximum							
January thru December	QL	***	***		***	***	***			
рН	Effluent				6.5		8.5	SU	2/Week	Grab
	Gross Value	****	****	****	Report Per	****	Report Per			
					Minimum		Maximum			
January thru December	QL	***	***		***	***	***			
рН	Intake From				REPORT		REPORT	SU	2/Week	Grab
	Stream	****	****	****	Daily	****	Daily			
					Minimum		Maximum			
January thru December	QL	***	***		***	***	***			
LC50 Statre 96hr Acu	Effluent				REPORT			PERCENT	1/Year	Composite
Mysid Bahia	Gross Value	****	****	****	Daily	****	****			
					Minimum					
January thru December	QL	***	***		***	***	***			

Surface Water DMR Reporting Requirements:
Submit a Monthly DMR: Within twenty-five days after the end of every month beginning from the effective date of the permit (EDP)..

Table III - B - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final **PHASE Start Date: PHASE End Date:**

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Chlorine Produced	Effluent					REPORT	0.2	MG/L	2/Month	Grab
Oxidants	Gross Value	****	****	****	****	Monthly Average	Daily Maximum			
January thru December	MDL	***	***	1	***	0.1	0.1			
Temperature,	Effluent					REPORT	45	DEG.C	2/Month	Grab
oC	Gross Value	****	****	****	****	Monthly	Daily			
]		Average	Maximum			
January thru December	QL	***	***		***	***	***			
Temperature,	Intake From					REPORT	REPORT	DEG.C	2/Month	Grab
oC	Stream	****	****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Boron, Total	Effluent					REPORT	REPORT	UG/L	1/Year	Grab
(as B)	Gross Value	****	****	****	****					
January thru December	QL	***	***	-	***	***	***			
Net Rate of Addition	Effluent					REPORT	790	MBTU/HR	2/Month	Calculated
of Heat	Gross Value	****	****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Temp. Diff. between	Effluent Net					REPORT	18.3	DEG.C	2/Month	Calculated
Intake and Discharge	Value	****	****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	QL	***	***		***	***	***			

Page 5 of 12 Limits And Monitoring Requirements

MONITORED LOCATION:

RECEIVING STREAM:

STREAM CLASSIFICATION:

DISCHARGE CATEGORY(IES):

004A Combined Wastewater

Oyster Creek Discharge Canal SE1(C2)

B - Industrial Wastewater

Location Description

Sampling shall take place at the sample pipe located inside the fence near the terminus of the 30 inch header or at the outfall of DSN 004A depending upon on-site conditions. Effluent net flow values shall be used for calculating loading values. Net flow is equal to effluent flow - heat exchanger flow. Heat exchanger flow shall be reported as "internal monitoring". Please refer to item A.1.j. and G.2.h. for additional information on pH and temperature, respectively.

Contributing Waste Types

Process Water

Surface Water DMR Reporting Requirements:

Submit a Monthly DMR: Within twenty-five days after the end of every month beginning from the effective date of the permit (EDP)...

Table III - C - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final PHASE Start Date: PHASE End Date:

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Flow, In Conduit or Thru Treatment Plant	Internal Monitoring	REPORT Monthly Average	REPORT Daily Maximum	MGD	****	****	****	****	1/Month	Calculated
January thru December	QL	***	***		***	***	***			
Flow, In Conduit or Thru Treatment Plant	Effluent Gross Value	REPORT Monthly Average	REPORT Daily Maximum	MGD	****	****	****	****	1/Month	Calculated
January thru December	QL	***	***		***	***	***			
Flow, In Conduit or Thru Treatment Plant	Effluent Net Value	REPORT Monthly Average	REPORT Daily Maximum	MGD	****	****	****	****	1/Month	Calculated
January thru December	QL	***	***		***	***	***			
рН	Effluent Gross Value	****	****	****	6.0 Daily Minimum	****	9.0 Daily Maximum	SU	1/Week	Grab
January thru December	QL	***	***		***	***	***			

Limits And Monitoring Requirements Page 6 of 12

Surface Water DMR Reporting Requirements:
Submit a Monthly DMR: Within twenty-five days after the end of every month beginning from the effective date of the permit (EDP)..

Table III - C - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final **PHASE Start Date: PHASE End Date:**

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
рН	Intake From				REPORT		REPORT	SU	1/Week	Grab
	Stream	****	****	****	Daily	****	Daily			
					Minimum		Maximum			
January thru December	QL	***	***		***	***	***			
Solids, Total	Effluent					REPORT	REPORT	MG/L	1/Month	Grab
Suspended	Gross Value	****	****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Solids, Total	Effluent Net	REPORT	22.7	KG/DAY		30	100	MG/L	1/Month	Calculated
Suspended	Value	Monthly	Daily		****	Monthly	Daily			
		Average	Maximum			Average	Maximum			
January thru December	QL	***	***		***	***	***			
Solids, Total	Intake From	REPORT				REPORT	REPORT	MG/L	1/Month	Grab
Suspended	Stream		****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	QL	***	***		***	***	***			
LC50 Statre 96hr Acu	Effluent				REPORT			PERCENT	1/Year	Composite
Mysid Bahia	Gross Value	****	****	****	Daily	****	****			
					Minimum					
January thru December	QL	***	***		***	***	***			
Chlorine Produced	Effluent					REPORT	0.2	MG/L	1/Month	Grab
Oxidants	Gross Value	****	****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	MDL	***	***		***	0.1	0.1			
Temperature,	Effluent					REPORT	37.2	DEG.C	1/Month	Grab
oC	Gross Value	****	****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	QL	***	***		***	***	***			

Page 7 of 12 Limits And Monitoring Requirements

Surface Water DMR Reporting Requirements:
Submit a Monthly DMR: Within twenty-five days after the end of every month beginning from the effective date of the permit (EDP)..

Table III - C - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final **PHASE Start Date: PHASE End Date:**

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Petroleum	Effluent					REPORT	REPORT	MG/L	1/Month	Grab
Hydrocarbons	Gross Value	****	****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Petroleum	Effluent Net	REPORT	4.54	KG/DAY		10	15	MG/L	1/Month	Calculated
Hydrocarbons	Value	Monthly	Daily		****	Monthly	Daily			
		Average	Maximum			Average	Maximum			
January thru December	QL	***	***		***	***	***			
Petroleum	Intake From					REPORT	REPORT	MG/L	1/Month	Grab
Hydrocarbons	Stream	****	****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Carbon, Tot Organic	Effluent					REPORT	50	MG/L	1/Month	Grab
(TOC)	Gross Value	****	****	****	****	Monthly	Daily			
						Average	Maximum			
January thru December	QL	***	***		***	***	***			
Boron, Total	Effluent					REPORT	REPORT	UG/L	1/Year	Grab
(as B)	Gross Value	****	****	****	****					
January thru December	QL	***	***		***	***	***			

Limits And Monitoring Requirements Page 8 of 12 MONITORED LOCATION: 005A Dilution Pump Discharge

RECEIVING STREAM:

STREAM CLASSIFICATION:

DISCHARGE CATEGORY(IES):

Oyster Creek Discharge Canal SE1(C2) B - Industrial Wastewater

Location Description

Outfall discharges into the discharge canal at Latitude 39d 48' 48.9" and Longitude 74d 12' 28.2"

Contributing Waste Types

Process Water

Surface Water DMR Reporting Requirements:

Submit a Monthly DMR: Within twenty-five days after the end of every month beginning from the effective date of the permit (EDP)...

Table III - D - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final PHASE Start Date: PHASE End Date:

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Flow, In Conduit or Thru Treatment Plant	Effluent Gross Value	REPORT Monthly Average	REPORT Daily Maximum	MGD	****	****	****	****	Continuous	Calculated
January thru December	QL	***	***		***	***	***			

MONITORED LOCATION:

RECEIVING STREAM:

STREAM CLASSIFICATION:

DISCHARGE CATEGORY(IES):
B - Industrial Wastewater

007A Dilution Pump Seal Water

Oyster Creek Intake Canal

SE1(C2)

Location Description

Sampling shall take place at the north side of the dilution pump structure at Latitude 39d 48' 50.9" and Longitude 74d 12' 55.1".

Contributing Waste Types

Process Water

Surface Water DMR Reporting Requirements:

Submit a Monthly DMR: Within twenty-five days after the end of every month beginning from the effective date of the permit (EDP)..

Table III - E - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final

PHASE Start Date:

PHASE End Date:

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Flow, In Conduit or Thru Treatment Plant	Effluent Gross Value	REPORT Monthly	REPORT Daily Maximum	GPD	****	****	****	****	1/Month	Calculated
January thru December	QL	Average ***	***		***	***	***			
Petroleum Hydrocarbons	Effluent Gross Value	****	****	****	****	10 Monthly Average	15 Daily Maximum	MG/L	1/Month	Grab
January thru December	QL	***	***		***	***	***			

MONITORED LOCATION: 008A Screen Water Discharge

RECEIVING STREAM:

STREAM CLASSIFICATION:

DISCHARGE CATEGORY(IES):

ater Discharge Oyster Creek Discharge Canal SE1(C2)

B - Industrial Wastewater

Location Description

Sampling shall take place at the outfall of DSN 008A at Latitude 39d 48' 48.8" and Longitude 74d 12' 27.5".

Contributing Waste Types

Unprocessed water

Surface Water DMR Reporting Requirements:

Submit a Monthly DMR: Within twenty-five days after the end of every month beginning from the effective date of the permit (EDP)...

Table III - F - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final PHASE Start Date: PHASE End Date:

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Flow, In Conduit or Thru Treatment Plant	Effluent Gross Value	REPORT Monthly Average	REPORT Daily Maximum	MGD	****	****	****	****	1/Month	Calculated
January thru December	QL	***	***		***	***	***			

MONITORED LOCATION: 009A Fish Sampling Pool Disch.

RECEIVING STREAM: Forked River Intake Canal STREAM CLASSIFICATION: SE1(C2) **DISCHARGE CATEGORY(IES):**

B - Industrial Wastewater

Location Description

Sampling shall take place at the outfall of DSN 009A at Latitude 39d 48' 48.6" and Longitude 74d 12' 27.9".

Contributing Waste Types

Unprocessed water

Surface Water DMR Reporting Requirements:

Submit a Monthly DMR: Within twenty-five days after the end of every month beginning from the effective date of the permit (EDP)..

Table III - G - 1: Surface Water DMR Limits and Monitoring Requirements

PHASE: Final PHASE Start Date: PHASE End Date:

Parameter	Sample Point	Limit	Limit	Units	Limit	Limit	Limit	Units	Frequency	Sample Type
Flow, In Conduit or Thru Treatment Plant	Effluent Gross Value	REPORT Monthly Average	REPORT Daily Maximum	MGD	****	****	****	****	1/Month	Calculated
January thru December	QL	***	***		***	***	***			

PART IV

SPECIFIC REQUIREMENTS: NARRATIVE

Industrial Wastewater

A. MONITORING REQUIREMENTS

1. Standard Monitoring Requirements

- a. Each analysis required by this permit shall be performed by a New Jersey Certified Laboratory that is certified to perform that analysis.
- b. The Permittee shall perform all water/wastewater analyses in accordance with the analytical test procedures specified in 40 CFR 136 unless other test procedures have been approved by the Department in writing or as otherwise specified in the permit.
- c. The permittee shall utilize analytical methods that will ensure compliance with the Quantification Levels (QLs) listed in PART III. QLs include, but are not limited to, Recommended Quantification Levels (RQLs) and Method Detection Levels (MDLs). If the permittee and/or contract laboratory determines that the QLs achieved for any pollutant(s) generally will not be as sensitive as the QLs specified in PART III, the permittee must submit a justification of such to the Bureau of Surface Water Permitting. For limited parameters with no QL specified, the sample analysis shall use a detection level at least as sensitive as the effluent limit.
- d. All sampling shall be conducted in accordance with the Department's Field Sampling Procedures Manual, or an alternate method approved by the Department in writing.
- e. All monitoring shall be conducted as specified in Part III.
- f. All sample frequencies expressed in Part III are minimum requirements. Any additional samples taken consistent with the monitoring and reporting requirements contained herein shall be reported on the Monitoring Report Forms.
- g. Annual and semi-annual wastewater testing shall be conducted in a different quarter of each year so that tests are conducted in each of the four permit quarters of the permit cycle. Testing may be conducted during any month of the permit quarters.
- h. The permittee shall perform all residual analyses in accordance with the analytical test procedures specified in 40 CFR 503.8 and the Sludge Quality Assurance Regulations (N.J.A.C. 7:14C) unless other test procedures have been approved by the Department in writing or as otherwise specified in the permit.
- i. Flow shall be measured using a calculated sample type for all outfalls.

Industrial Wastewater Page 1 of 11

j. pH: For DSN 001A and 002A - the effluent pH shall be in the range of 6.5 standard units (S.U.) to 8.5 S.U. However, if the intake pH is less than 6.5 S.U., the pH of the effluent shall not be considered a violation of the permit if it is less than the intake pH. Likewise, if the intake pH is greater than 8.5 S.U., the pH of the effluent shall not be considered a violation of the permit if it is greater than 8.5 S.U.

For DSN 004A - the effluent pH shall be in the range of 6.0 to 9.0 S.U. However, if the intake pH is less than 6.0 S.U., the pH of the effluent shall not be considered a violation of the permit if it is less than the intake pH. Likewise, if the intake pH is greater than 9.0 S.U., the pH of the effluent shall not be considered a violation of the permit if it is greater than 9.0 S.U.

When reporting of the intake water pH is required, it shall be reported as the intake pH on the Monitoring Report Form.

For DSN 007A - the pH of the effluent shall not be less than 6.0 S.U. nor greater than 9.0 S.U.; or, during periods when the pH of the intake water is less than 6.0, the pH of the effluent shall not be less than that of the intake; or, during periods when the pH of the intake water is greater than 9.0, the pH shall not be greater than that of the intake. However, no monitoring or reporting for pH is required at this time.

- k. The net amount of heat per unit time shall be calculated by multiplying heat capacity, discharge flow, and discharge-intake temperature difference.
- 1. Net values shall be calculated by using the following formula: [(gross effluent concentration)*(gross effluent flow) (intake concentration)*(intake flow)] / [gross effluent flow].
- m. Monitoring for temperature shall only be conducted when cooling water is discharged during the monitoring period (i.e. the facility is generating power).
- n. There shall be no discharge of polychlorinated biphenyls (PCBs) at any outfalls (using conventional analytical methods) such as those which are commonly used for transformer fluid.

B. RECORDKEEPING

1. Standard Recordkeeping Requirements

- a. The permittee shall retain records of all monitoring information, including 1) all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation (if applicable), 2) copies of all reports required by this NJPDES permit, 3) all data used to complete the application for a NJPDES permit, and 4) monitoring information required by the permit related to the permittee's residual use and/or disposal practices, for a period of at least 5 years, or longer as required by N.J.A.C. 7:14A-20, from the date of the sample, measurement, report, application or record.
- b. Records of monitoring information shall include 1) the date, locations, and time of sampling or measurements, 2) the individual(s) who performed the sampling or measurements, 3) the date(s) the analyses were performed, 4) the individual(s) who performed the analyses, 5) the analytical techniques or methods used, and 6) the results of such analyses.

C. REPORTING

1. Standard Reporting Requirements

Industrial Wastewater Page 2 of 11

- a. The permittee shall submit all required monitoring results to the Department on the forms provided to them. The Monitoring Report Forms (MRFs) may be provided to the permittee in either a paper format or in an electronic file format. Unless otherwise noted, all requirements below pertain to both paper and electronic formats.
- b. Any MRFs in paper format shall be submitted to the following addresses:
 - **NJDEP**

Division of Water Quality Bureau of Permit Management P.O. Box 029 Trenton, New Jersey 08625-0029

(if requested by the Water Compliance and Enforcement Bureau) NJDEP: Central Bureau of Water Compliance and Enforcement P.O. Box 407 Trenton, New Jersey 08625-0407

- c. Any electronic data submission shall be in accordance with the guidelines and provisions outlined in the Department's Electronic Data Interchange (EDI) agreement with the permittee. Paper copies must be available for on-site inspection by DEP personnel or provided to the DEP upon written request.
- d. All monitoring report forms shall be certified by the highest ranking official having day-to-day managerial and operational responsibilities for the discharging facility.
- e. The highest ranking official may delegate responsibility to certify the monitoring report forms in his or her absence. Authorizations for other individuals to sign shall be made in accordance with N.J.A.C. 7:14A-4.9(b).
- f. Monitoring results shall be submitted in accordance with the current Discharge Monitoring Report Manual and any updates thereof.
- If monitoring for a parameter is not required in a monitoring period, the permittee must report "CODE=N" for that parameter.
- h. For intermittent discharges, the permittee shall obtain a sample during at least one of the discharge events occurring during a monitoring period.
- i. If there are no discharge events during an entire monitoring period, the permittee must notify the Department when submitting the monitoring results. This is accomplished by placing a check mark in the "No Discharge this monitoring period" box on the paper or electronic version of the monitoring report submittal form.

D. **SUBMITTALS**

1. Standard Submittal Requirements

a. The permittee shall amend the Operation & Maintenance Manual whenever there is a change in the treatment works design, construction, operations or maintenance which substantially changes the treatment works operations and maintenance procedures.

E. **FACILITY MANAGEMENT**

1. Discharge Requirements

a. The permittee shall discharge at the location(s) specified in PART III of this permit.

Industrial Wastewater Page 3 of 11

- b. The permittee shall not discharge foam or cause foaming of the receiving water that: 1) Forms objectionable deposits on the receiving water, 2) Forms floating masses producing a nuisance, or 3) Interferes with a designated use of the waterbody. Foaming of the receiving waterbody caused by natural conditions shall not be considered a violation of this standard.
- c. The permittee's discharge shall not produce objectionable color or odor in the receiving stream.
- d. The discharge shall not exhibit a visible sheen.
- e. When quantification levels (QL) and effluent limits are both specified for a given parameter in Part III, and the QL is less stringent than the effluent limit, effluent compliance will be determined by comparing the reported value against the QL.
- f. The Permittee is authorized to use the following corrosion inhibitors, biocides, or other cooling water additives: DSN 001A Sodium hypochlorite; DSN 002A Chlorine gas; DSN 004A Sodium hypochlorite, Bioguard Tabguard Pucks (trichloro-s-triazinetrione).

Chlorine Produced Oxidants (CPO) shall not be discharged from any single generating unit for more than two hours per day. Samples for CPO shall be taken once during each two hour period of chlorination. Option 1 CPO limits apply to DSN 001A during normal operations. Option 2 CPO limits apply to DSN 001A during periods of chlorination of the turbine building closed CW heat exchanger.

If the permittee decides to begin using any additional additives in the future, the permittee must notify the Bureau of Surface Water Permitting at least 180 days prior to use so that the permit may be reopened to incorporate any additional limitations deemed necessary.

2. Applicability of Discharge Limitations and Effective Dates

- a. Surface Water Discharge Monitoring Report (DMR) Form Requirements
 - i. The final effluent limitations and monitoring conditions contained in PART III apply for the full term of this permit action.

3. Toxicity Testing Requirements - Acute Whole Effluent Toxicity (DSNs 001A, 002A and 004A)

- a. The permittee shall conduct toxicity tests on its wastewater discharge in accordance with the provisions in this section. Such testing will determine if appropriately selected effluent concentrations adversely affect the test species.
- b. Acute toxicity tests shall be conducted using the test species and method identified in Part III of this permit.
- c. Any test that does not meet the specifications of N.J.A.C. 7:18, laboratory certification regulations, must be repeated within 30 days of the completion of the initial test. The repeat test shall not replace subsequent testing required in Part III.
- d. The permittee shall resubmit an Acute Methodology Questionnaire within 60 days of any change in laboratory.
- e. Submit an acute whole effluent toxicity test report: within twenty-five days after the end of every 12 month monitoring period beginning from the effective date of the permit (EDP). The permittee shall submit toxicity test results on appropriate forms.
- f. Test reports shall be submitted to:

Industrial Wastewater Page 4 of 11

 New Jersey Department of Environmental Protection Division of Water Quality Bureau of Surface Water Permitting P.O. Box 029 Trenton, New Jersey 08625.

F. CONDITIONS FOR MODIFICATION

1. Notification requirements

a. The permittee may request a minor modification for a reduction in monitoring frequency for a non-limited parameter when four consecutive test results of "not detected" have occurred using the specified QL.

2. Causes for modification

- a. The Department may modify or revoke and reissue any permit to incorporate 1) any applicable effluent standard or any effluent limitation, including any effluent standards or effluent limitations to control the discharge of toxic pollutants or pollutant parameters such as acute or chronic whole effluent toxicity and chemical specific toxic parameters, 2) toxicity reduction requirements, or 3) the implementation of a TMDL or watershed management plan adopted in accordance with N.J.A.C. 7:15-7.
- b. The permittee may request a minor modification to eliminate the monitoring requirements associated with a discharge authorized by this permit when the discharge ceases due to changes at the facility.

G. Custom Requirement

1. Section 316(a) Determination

a. The Department is hereby granting a Section 316(a) variance for the facility's cooling water discharge (once through cooling water system). This determination is based on the Department's findings that: (1) the facility's operations have not changed appreciably since the time that the 1994 NJPDES permit was issued; (2) cooling water flow rates have remained relatively constant; and (3) the Department has not received information that would cause the Department to reconsider the variance at this time.

2. Requirements to Monitor and/or Minimize Thermal Effects while the Once-Through Cooling System is Operational

- a. Temperature Monitoring in Oyster Creek The permittee shall continuously measure the temperature four (4) feet below the surface of Oyster Creek at the Route 9 bridge. Any results have a bearing on whether or not the permittee has to perform an Effluent Temperature Evaluation Study (ETES) as described in b. below.
- b. Criteria for Having to Conduct an Effluent Temperature Evaluation Study (ETES).
 - i. Except as provided in ii below, the permittee shall conduct an ETES if any maximum daily temperature readings at the Route 9 bridge monitoring location exceed the temperature action level of 97 degrees Fahrenheit. The ETES is intended to determine what caused the exceedances and to identify mitigation measures for meeting the action level for effluent water temperature within Oyster Creek at the Route 9 bridge.

Industrial Wastewater Page 5 of 11

- ii. When an exceedance occurs, the permittee shall:
 - a) Evaluate whether the exceedance of the temperature action level occured solely as a result of any, or a combination of, the following factors: unusually high intake temperature (i.e. any intake temperature in excess of 85 degrees Fahrenheit); operation of the dilution pumps in accordance with item d. below; implementation of the alternate effluent limitations in accordance with a Maximum Emergency Generation event as defined in G.2.g.; during condenser backwashing; during intake components maintenance; or when fewer than four circulating water pumps are operating.
 - b) If the evaluation shows that any of the above factors caused the exceedance, the permittee is not required to conduct an ETES. However, the permittee shall submit a report to the Department within ten business days of the exceedance, which specifies the relationship of the exceedance to items noted in a) above. The report shall be submitted to the following address:

Mailcode 401-02B NJDEP - Division of Water Quality Bureau of Surface Water Permitting 401 East State Street, P.O. Box 420 Trenton, NJ 08625

- c) When the temperature monitoring action level exceedance occurs and the cause cannot be attributed to the factors described in a) above, then the permittee shall conduct an ETES where the conditions are defined in c) below.
- c. Effluent Temperature Evaluation Study (ETES).
 - i. The permittee shall evaluate the relationship of the following factors to the exceedance of the temperature action level of 97 degrees Fahrenheit: circulating water pump operation, dilution pump operation, plant power levels, heat rejection, effluent temperature at DSN 001A, temperature at the Route 9 bridge, and the temperature differential across the main condenser for the date of the exceedance of the temperature action level as well as relevant periods prior to and following the exceedance.
 - ii. A written report shall be prepared documenting the evaluation conducted in accordance with Part IV G.2.c.i. The report shall include tabular and graphical presentation of daily maximum and average intake temperatures, effluent temperatures at DSN 001A, Route 9 bridge monitoring location temperatures, and the temperature differential across the main condenser. The report shall include an analysis and discussion of the cause of the exceedance and shall include recommended mitigation measures.
 - iii. If mitigation measures are identified that can be implemented while maintaining compliance with all other permit conditions, then the permittee is not required to obtain Department approval prior to implementation. Otherwise, Department approval will be required prior to implementation of mitigation measures or modification of the permit.

Industrial Wastewater Page 6 of 11

iv. Two copies of all written submissions required above shall be sent to:

Mailcode 401-02B NJDEP - Division of Water Quality Bureau of Surface Water Permitting 401 East State Street, P.O. Box 420 Trenton, NJ 08625

d. Dilution Pump Operations.

- i. When the intake water temperature is at or above 60 degrees Fahrenheit and the temperature as measured four feet below the surface at the Route 9 bridge over Oyster Creek is at or less than 87 degrees Fahrenheit, no dilution pump operation is required.
- ii. When the temperature in Oyster Creek exceeds 87 degrees Fahrenheit, as measured four feet below the surface at the Route 9 bridge over Oyster Creek, one dilution pump will be put into operation. If, after one dilution pump has been in operation for at least two hours, the temperature measured at such point continues to exceed 87 degrees Fahrenheit, a second dilution pump will be put into operation.
- iii. When the intake water temperature is less than 60 degrees Fahrenheit, two dilution pumps will be put into operation.
- iv. If two dilution pump operation is required under ii. and iii. above, and one of the operating dilution pumps becomes inoperable, then a second dilution pump shall be put into operation within 60 minutes (except during dilution pump maintenance when a sufficient number of pumps may not be available).
- v. During periods of dilution pump and/or dilution pump component maintenance, a sufficient number of dilution pumps may not be available to meet the requirements of ii. or iii. above. In that event, the Station may be operated for a period not to exceed fourteen (14) days in order to make necessary repairs, provided at least one dilution pump is available for operation. As soon as a second dilution pump is available for operation, it shall be placed into service as required under ii. or iii. When the Station has operated under this paragraph for 14 days and continues to lack sufficient pumps to comply with ii. or iii., the Station shall become subject to vi. below instead of this paragraph.
- vi. If dilution pump operation is required under ii., iii., and iv., and if one pump operation under v. above continues for 14 days, remedial action will be taken within 24 hours to bring the plant into compliance with ii., iii., and iv. If the remedial action taken involves reduction of Station power output, power will be reduced as necessary to achieve the same effects as operating the proper number of dilution pumps as required by paragraphs ii., iii., and iv.
- vii. Paragraphs ii. through vi. above do not apply during Station shutdowns. Any dilution pump(s) will be operated, however, in a manner that will minimize the adverse impact of Station shutdown on marine and estuarine life in Oyster Creek and Barnegat Bay.
- viii. Paragraphs ii. through vi. do not apply in the event of a hazardous substance spill into the intake or discharge canals. In such cases, the dilution pumps will be operated in a manner which will minimize the environmental impact of the spill, while taking into consideration the need to minimize the possibility of thermal shock mortality of organisms residing in the discharge canal.

e. Thermal Discharge.

Industrial Wastewater Page 7 of 11

- i. The rate of temperature change from the Station shall not cause mortality to fish or shellfish.
- f. Plant Outages During Operation of Once-through Cooling System.
 - i. The permittee shall not schedule routine outages during the months of December, January, February, and/or March.
- g. The permittee shall not schedule routine intake component (e.g. circulating water pumps and appurtenant equipment, traveling screens and appurtenant equipment, intake ports, etc.) maintenance which may cause violation of thermal limitations or intake velocity limitations during the months of June, July, August, and/or September. The Department acknowledges that the NJPDES Regulations require the permittee to maintain its plant in good working order and efficient operation and, therefore, some intake component maintenance may be required.
- h. Temperature Limits For the purposes of the Administrative Record, the Department recognizes that the following temperature limits apply to the facility in units of both Celsius and Fahrenheit:.
 - i. DSN 001A

Temperature Difference between Intake and Discharge (Option 1) - 12.8 degrees Celsius (23 degrees Fahrenheit)

Temperature Difference between Intake and Discharge (Option 2) - 18.3 degrees Celsius (33 degrees Fahrenheit)

Effluent Temperature (Option 1) - 41.1 degrees Celsius (106 degrees Fahrenheit) Effluent Temperature (Option 2) - 43.3 degrees Celsius (110 degrees Fahrenheit).

ii. DSN 002A

Temperature Difference between Intake and Discharge - 18.3 degrees Celsius (33 degrees Fahrenheit)

Effluent Temperature - 45 degrees Celsius (113 degrees Fahrenheit).

- iii. DSN 004A
 - Effluent Temperature 37.2 degrees Celsius (99 degrees Fahrenheit).
- i. Option 1 and Option 2 Heat and Temperature Limits The Department has specified effluent limitations for effluent temperature, temperature difference between intake and discharge, and net rate of addition of heat under two scenarios that are identified in this permit as Option 1 and Option 2 limits. These limits are applicable as follows:.
 - i. Option 1 limits are applicable when four circulating water pumps are operating for condenser cooling.
 - ii. Option 2 limits shall be applicable when fewer than four circulating water pumps are operating, during periods of condenser backwash, during intake component maintenance, or during a Emergency Condition as defined in item G.2.g.
 - iii. The permittee shall comply with "Option 2 Limits" for outfall DSN 001A during an Emergency Condition as declared by the PJM Interconnection Office of Information Dispatcher, including Capacity, Weather/Environmental, Sabotage/Terrorism, and Transmission Security Emergencies as such terms are defined in the PJM Interconnection Emergency Operations Manual M-13, Emergency Operations, Revision 41, effective October 1, 2010, provided that the number of days per year when such Emergency Conditions apply shall not exceed 20. Within eight hours of the permittee being advised by PJM that Emergency Operations are required, the permittee shall notify DEP's Central Bureau of Water Compliance and Enforcement by telephone that the Station has invoked the use of the alternate thermal limits of the permit.

Industrial Wastewater Page 8 of 11

j. Chlorine Produced Oxidants Limits at DSN 001A - Option 1 CPO limits are applicable during normal operations. Option 2 CPO limits are applicable during periods of chlorination of the turbine building closed CW heat exchanger.

3. Section 316(b) Determination

- a. Based upon the following factors, the Department has determined that the best technology available determination for this facility in accordance with best professional judgment is as follows:
 - i. Pursuant to the December 9, 2010 Administrative Consent Order ("ACO"), Exelon is legally required to Terminate Operations, as that term is defined in the December 9, 2010 ACO, no later than December 31, 2019. As a direct result of this requirement, the Department has determined that closed cycle cooling is not the best technology available given the length of time that would be required to retrofit from the existing once-through cooling system to a closed-cycle cooling system and the limited life span of the facility after implementation of the closed-cycle cooling system. The facility has physical limitations which constrain the location and types of closed-cycle cooling systems that could be installed. As stated in the January 7, 2010 draft permit, the length of time required to design, permit and construct closed-cycle cooling technology at the facility would likely be at least seven years and would involve significant costs.
 - ii. In consideration of the required Termination date, the Department has determined, in its best professional judgment, that the Station's existing once-through cooling system, which is equipped with a number of existing measures to reduce impingement mortality and entrainment losses, including a system of Ristroph-type screens and fish handling mechanisms, is the best technology available for the facility's cooling water intake through Termination and with respect to Post-Termination activities as defined in Paragraph I of the Findings of the December 9, 2010 ACO.
 - iii. If this permit is administratively extended and remains in effect as of January 1, 2020, beginning on that day the permittee shall no longer be authorized to withdraw up to 662.4 million gallons per day (MGD) of non-contact cooling water through the Circulating Water Intake and up to 748.8 MGD of water through the Dilution Water Intake. Rather, on and after January 1, 2020, the permittee shall reduce its surface water intake to the greater of 40,000 gallons per minute or the flow commensurate with that achievable using closed-cycle cooling.
 - iv. Upon Termination the permittee shall lower reactor power slowly so that the rate of change in the discharge canal water temperature is approximately 1.7 degrees Fahrenheit per hour. If thermal shock nevertheless results in harm to aquatic life, the permittee shall have an affirmative defense with respect to any liability resulting from same.

4. Requirements to Minimize Impingement and Entrainment Effects While the Once-Through Cooling System is Operational

- a. Intake Velocity.
 - i. When one circulating water pump is in operation, or when one circulating water pump is in operation in each half of the intake structure, or when there is no flow through the main condenser, the permittee is not required to report intake velocity.

Industrial Wastewater Page 9 of 11

ii. The intake velocity shall not exceed 2.2 feet per second (fps) averaged over one minute at any point at the midplane of each port and the average of the readings taken at 5 foot intervals from the top to the bottom of the water column of the individual port shall not exceed 1 fps during 6 port, 6 screen operation. In the event that any screen must be removed from service due to intake component maintenance, then the 1 fps limitation shall apply as an average over the effective intake face.

5. Section 316(b) Conditions as per the December 9, 2010 Administrative Consent Order

- a. Implementation Schedule Given that the Termination date of December 31, 2019 is the cornerstone of the BTA determination and hence a requirement of this NJPDES permit, the Permittee shall take the following steps, within the time set forth in the below implementation schedule, consistent with a process to Terminate Operations no later than December 31, 2019;.
 - i. By December 31, 2013, Exelon shall certify to the Department's Bureau of Surface Water Permitting that the fuel parameters and planning for the 2014 plant outages are to be based on a five-year period of operation ending on December 31, 2019, and not the standard six-year period;.
 - ii. By December 31, 2014, Exelon shall take into account the Termination in the calculation of the anticipated decommissioning cost and earnings estimates for the Station, which shall be included in the biennial or annual reports regarding decommissioning funding assurance submitted to the USNRC:.
 - iii. By December 31, 2014, Exelon shall include in the next biennial or annual report to the USNRC regarding decommissioning funding assurance the fact that Exelon intends to Terminate Operations on or before December 31, 2019, and shall have the anticipated decommissioning cost and earnings estimates reflect that date;.
 - iv. By December 31, 2014, Exelon shall certify to the Department's Bureau of Surface Water Permitting that the Station's five-year outage schedule lists the 2018 outage as the final scheduled refueling outage;.
 - v. By May 31, 2016, Exelon shall certify to the Department's Bureau of Surface Water Permitting that the Station's output was not bid into the PJM capacity market auction for delivery after December 31, 2019;.
 - vi. By December 31, 2018, Exelon shall submit the Post-Shutdown Decommissioning Activities Report ("PSDAR") to the USNRC based on the December 31, 2019 Termination, in accordance with 10 CFR 50.82(a)(4)(i).

b. Operating Conditions.

- i. The permittee shall maintain the facility throughout its period of operation in a manner that ensures operation is fully in accord with its permits and consistent with the operating license issued by the USNRC;.
- ii. The permittee shall not sell or otherwise transfer the facility to another entity for use as a facility for generation of electric power except as provided in the ACO.
- iii. The permittee shall apply for a renewal permit which also provides for the required Termination date of December 31, 2019 at least 180 days prior to the expiration of the final permit in accordance with N.J.A.C. 7:14A-4.2(e)3;.
- iv. The permittee shall not seek a modification of the NJPDES permit for operations beyond Termination, unless it can meet the intake flow conditions set forth in item G.5.a. above.

Industrial Wastewater Page 10 of 11

c. Progress Reports.

- i. Submit a progress report: within one year from the effective date of this document to outline progress toward Termination.
- ii. Submit a progress report: within 24 months from the effective date of this document to outline progress toward Termination.
- iii. Submit a progress report: within 36 months from the effective date of the permit (EDP) to outline progress toward Termination.
- iv. Submit a progress report: within 48 months from the effective date of the permit (EDP) to outline progress toward Termination.
- v. Progress reports shall continue to be submitted within 60 months of the EDP and annually thereafter for any period that the permit is administratively extended.

Industrial Wastewater Page 11 of 11